训练大模型需要的基础数据结构与算法

训练大模型需要的基础数据结构与算法

在大模型训练与优化的过程中,除了深度学习框架和模型结构,基础的算法与数据结构同样至关重要。本文将系统梳理三大模块内容:常见算法、并行计算机制、大模型训练优化策略。


🔹 一、常见算法模块

✅ 排序算法(Sorting)

算法思路时间复杂度
冒泡排序(Bubble Sort)相邻交换,逐步把最大/最小推到末尾O(n²)
快速排序(Quick Sort)选定 pivot,左右划分递归排序O(n log n)
归并排序(Merge Sort)拆分 → 排序 → 合并O(n log n)
堆排序(Heap Sort)构建最大/最小堆,逐步取出元素O(n log n)

排序算法应用于:训练样本排序、Top-k 筛选、结果输出重排等场景。


✅ 图算法(Graph Algorithms)

图结构广泛用于建模任务依赖、计算图调度等。

DAG(有向无环图)
  • 特点:无环、方向明确
  • 应用:模型编译顺序、训练依赖、数据流图
最短路径算法
  • Dijkstra:边权非负图,贪心策略,时间复杂度 O(n log n)
  • Floyd-Warshall:全点对最短路径,O(n³),适用于小图
  • Bellman-Ford:支持负权边,O(nm)

✅ 动态规划(Dynamic Programming)

核心思想:

将复杂问题拆分为子问题,并存储子问题结果避免重复计算。

常见问题:
  • 斐波那契数列(Fib):从指数级降到 O(n)
  • 背包问题(Knapsack):资源最优分配模型
  • 最长公共子序列(LCS):文本相似度分析
  • 最长递增子序列(LIS):用于时间序列优化

🔹 二、并行计算相关机制

✅ 分布式哈希(Consistent Hashing)

用于在多节点之间高效分配数据,保证负载均衡与可扩展性。

  • 哈希函数 → 数据分区
  • 一致性哈希 → 节点变动时最小范围数据迁移
  • 应用场景:Redis Cluster、P2P 网络、KV 存储系统等

✅ 并行排序(Parallel Sorting)

提高排序速度,适用于大数据场景。

  • Parallel QuickSort:数据块划分 + 局部排序 + 合并
  • Bitonic Sort:适合 GPU 执行的并行排序
  • Odd-Even Sort:用于多核 CPU 并行排序任务

✅ MapReduce 计算模式

  • Map:将数据拆分成小块,分别处理
  • Reduce:对处理结果进行合并
  • 应用场景:搜索引擎统计、日志分析、训练样本清洗

🔹 三、大模型训练优化机制

✅ Ring-AllReduce(环形全归约)

多卡训练中常用的通信策略,用于同步梯度。

  • 每块 GPU 计算一部分梯度
  • 逐步向相邻 GPU 传递并累加,最终每块 GPU 都拿到完整梯度

效率远高于传统参数服务器架构。


✅ Pipeline 并行(模型切分)

将模型切成多个阶段,按流水线方式交给不同 GPU 处理。

  • 降低单卡显存压力
  • 提高利用率,多 GPU 协同计算

适合 Transformer 层级结构深但宽度适中的模型。


✅ 张量切分策略(Tensor Parallelism)

当某一层过大,即使 pipeline 拆层也无法放进一张 GPU,此时可对张量做进一步切分:

  • 行切分:适合矩阵乘法
  • 列切分:适合前馈层、softmax 等
  • 块切分:更复杂的 attention 机制中使用较多

✅ 小结

训练大模型不仅需要理解 PyTorch、Transformer,更要掌握排序、图算法、动态规划、MapReduce、并行机制、张量切分等基础能力。

这将是你成为一名真正 AI 系统工程师的核心基石。


📌 YoanAILab 技术导航页

💡 项目源码 × 实战部署
👉 点击查看完整导航页

📚 包含内容:

  • 🧠 GPT-2 项目源码(GitHub)
  • ✍️ CSDN 技术专栏合集
  • 💼 知乎转型日志
  • 📖 公众号 YoanAILab 全文合集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yoan AI Lab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值