训练大模型需要的基础数据结构与算法
在大模型训练与优化的过程中,除了深度学习框架和模型结构,基础的算法与数据结构同样至关重要。本文将系统梳理三大模块内容:常见算法、并行计算机制、大模型训练优化策略。
🔹 一、常见算法模块
✅ 排序算法(Sorting)
算法 | 思路 | 时间复杂度 |
---|---|---|
冒泡排序(Bubble Sort) | 相邻交换,逐步把最大/最小推到末尾 | O(n²) |
快速排序(Quick Sort) | 选定 pivot,左右划分递归排序 | O(n log n) |
归并排序(Merge Sort) | 拆分 → 排序 → 合并 | O(n log n) |
堆排序(Heap Sort) | 构建最大/最小堆,逐步取出元素 | O(n log n) |
排序算法应用于:训练样本排序、Top-k 筛选、结果输出重排等场景。
✅ 图算法(Graph Algorithms)
图结构广泛用于建模任务依赖、计算图调度等。
DAG(有向无环图)
- 特点:无环、方向明确
- 应用:模型编译顺序、训练依赖、数据流图
最短路径算法
- Dijkstra:边权非负图,贪心策略,时间复杂度 O(n log n)
- Floyd-Warshall:全点对最短路径,O(n³),适用于小图
- Bellman-Ford:支持负权边,O(nm)
✅ 动态规划(Dynamic Programming)
核心思想:
将复杂问题拆分为子问题,并存储子问题结果避免重复计算。
常见问题:
- 斐波那契数列(Fib):从指数级降到 O(n)
- 背包问题(Knapsack):资源最优分配模型
- 最长公共子序列(LCS):文本相似度分析
- 最长递增子序列(LIS):用于时间序列优化
🔹 二、并行计算相关机制
✅ 分布式哈希(Consistent Hashing)
用于在多节点之间高效分配数据,保证负载均衡与可扩展性。
- 哈希函数 → 数据分区
- 一致性哈希 → 节点变动时最小范围数据迁移
- 应用场景:Redis Cluster、P2P 网络、KV 存储系统等
✅ 并行排序(Parallel Sorting)
提高排序速度,适用于大数据场景。
- Parallel QuickSort:数据块划分 + 局部排序 + 合并
- Bitonic Sort:适合 GPU 执行的并行排序
- Odd-Even Sort:用于多核 CPU 并行排序任务
✅ MapReduce 计算模式
- Map:将数据拆分成小块,分别处理
- Reduce:对处理结果进行合并
- 应用场景:搜索引擎统计、日志分析、训练样本清洗
🔹 三、大模型训练优化机制
✅ Ring-AllReduce(环形全归约)
多卡训练中常用的通信策略,用于同步梯度。
- 每块 GPU 计算一部分梯度
- 逐步向相邻 GPU 传递并累加,最终每块 GPU 都拿到完整梯度
效率远高于传统参数服务器架构。
✅ Pipeline 并行(模型切分)
将模型切成多个阶段,按流水线方式交给不同 GPU 处理。
- 降低单卡显存压力
- 提高利用率,多 GPU 协同计算
适合 Transformer 层级结构深但宽度适中的模型。
✅ 张量切分策略(Tensor Parallelism)
当某一层过大,即使 pipeline 拆层也无法放进一张 GPU,此时可对张量做进一步切分:
- 行切分:适合矩阵乘法
- 列切分:适合前馈层、softmax 等
- 块切分:更复杂的 attention 机制中使用较多
✅ 小结
训练大模型不仅需要理解 PyTorch、Transformer,更要掌握排序、图算法、动态规划、MapReduce、并行机制、张量切分等基础能力。
这将是你成为一名真正 AI 系统工程师的核心基石。
📌 YoanAILab 技术导航页
💡 项目源码 × 实战部署
👉 点击查看完整导航页
📚 包含内容:
- 🧠 GPT-2 项目源码(GitHub)
- ✍️ CSDN 技术专栏合集
- 💼 知乎转型日志
- 📖 公众号 YoanAILab 全文合集