如何区分:Gymnasium、Gym 和 Isaac Gym?(更新中)

在强化学习领域,GymGymnasiumIsaac Gym 是经常被提到的工具库。它们名字相似,却有不同的应用场景和特点。

本文将详细解析它们的关系和区别,帮助你选择最适合的工具。

以常见的机器人强化学习任务:Panda 机械臂堆叠任务(Panda Cube-Stacking)为例,本文通过 Gymnasium 和 Isaac Gym 的实现对比,展示两者在代码结构、性能、适用场景上的不同。由于Gymnasium是Gym的升级版本,两者几乎一样,所以未展示Gym的任务。


一、Gym

Gym 是由 OpenAI 开发的经典强化学习环境库,自 2016 年发布以来,一直是强化学习研究的基石。

1. Gym 的特点

  • 提供了大量强化学习环境,如 CartPoleMountainCarAtari 游戏等。
  • 定义了标准的接口(如 resetstep),方便快速上手强化学习任务。

2. Gym 的问题

  • OpenAI 在维护 Gym 上逐渐减少投入。
  • 某些功能(如环境注册和依赖管理)在后期版本中开始出现问题。
  • Gym 停止更新后,很多用户开始转向其他替代方案。

二、Gymnasium

Gymnasium 是由社区主导开发的 Gym 的一个分支(fork),作为 Gym 的升级版。

1. Gymnasium 的改进

  • 完全兼容:Gymnasium 兼容 Gym 的 API,迁移非常简单。
  • 类型提示和错误检查:在 resetstep 等方法中增加了类型检查和提示。
  • 支持现代 Python:支持 Python 3.10 及以上版本。
  • 社区支持:持续修复问题,并添加新特性。

2. 如何迁移到 Gymnasium

只需将代码中的 import gym 替换为 import gymnasium as gym,代码基本无需修改。

3. 使用 Gymnasium 实现 Panda Cube-Stacking

Panda Cube-Stacking 的目标是用 Panda 机械臂抓取并堆叠方块,还需安装panda-gym ,提供 Panda 环境。

代码实现

import gymnasium as gym
import panda_gym
from stable_baselines3 import SAC

# 创建 Panda 堆叠任务环境
env = gym.make("PandaStack-v3")

# 使用 Soft Actor-Critic (SAC) 算法
model = SAC("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=50000)

# 测试模型
obs, _ = env.reset()
for _ in range(200):
    action, _ = model.predict(obs)
    obs, reward, done, _, _ = env.step(action)
    env.render()  # 渲染动画
    if done:
        break

env.close()

三、Isaac Gym

Isaac Gym 是 NVIDIA 开发的高性能物理仿真平台,专注于机器人仿真和大规模强化学习任务。

1. Isaac Gym 的特点

  • GPU 加速:基于 GPU 提供高性能仿真,比 Gym 快数百倍。
  • 真实物理模拟:支持机器人、机械臂、关节动力学等真实物理任务。
  • 兼容 Gym API:API 设计与 Gym 类似,方便迁移已有代码。

2. 适用场景

  • 机器人强化学习(如机械臂控制)。
  • 高性能仿真和需要大规模并行训练的任务。

3. 使用 Isaac Gym实现 Panda Cube-Stacking

import isaacgym
from isaacgym import gymapi, gymutil
from isaacgym.envs.base.vec_task import VecTask

# 初始化 Isaac Gym
gym = gymapi.acquire_gym()
sim_params = gymapi.SimParams()
sim_params.physx.solver_type = 1  # 使用 PhysX 求解器
sim_params.use_gpu_pipeline = True  # 使用 GPU 加速

# 创建环境
env = VecTask(sim_params=sim_params, task="FrankaCubeStacking")

# 训练任务
obs = env.reset()
for _ in range(1000):
    actions = env.action_space.sample()  # 随机动作
    obs, reward, done, _ = env.step(actions)
    env.render()  # 显示机器人仿真动画

env.close()

比较遗憾的是IsaacGym目前只支持ubuntu系统,且已停止更新;想在windows系统运行,必须在Omniverse的IsaacSim中运行,而IsaacSim功能更强大,对系统硬件要求也更高,一般能装Isaac Sim的不会再用IsaacGym了~~
在这里插入图片描述
如果非得装,也有一些教程:windows下安装 isaac sim gym (OmniIsaacGymEnvs)


四、三者关系总结

1. Gym 、Gymnasium、Isaac Gym对比

特性GymGymnasiumIsaac Gym
开发者OpenAI社区维护NVIDIA
状态停止更新持续更新持续更新
性能基于 CPU基于 CPU基于 GPU,大规模并行仿真
主要用途通用强化学习环境通用强化学习环境高性能机器人物理仿真
兼容性-兼容 Gym API类似 Gym API
是否推荐不推荐(已弃用)推荐推荐(适合高性能仿真任务)

2. Gymnasium 与 Isaac Gym 对比

在强化学习和机器人仿真领域,Gymnasium 和 Isaac Gym 是两个常用的工具。

特性GymnasiumIsaac Gym
目标用户强化学习初学者、通用任务开发者机器人研究人员、高性能需求用户
性能基于 CPU,适合小规模仿真基于 GPU,加速复杂物理任务
环境类型游戏、简单控制(如 CartPole)机器人物理仿真(如机械臂控制)
硬件需求普通计算机即可运行需要 NVIDIA GPU
适用场景经典控制、博弈、Atari 游戏机器人控制、机械臂仿真、大规模训练
渲染方式简单动画(通过 env.render()高精度 3D 动画(GPU 加速渲染)

总结

  • Gymnasium 适合强化学习初学者,提供简单的环境和控制任务,能够在普通计算机上运行。它适用于经典控制、博弈、Atari 游戏等简单任务。

  • Isaac Gym 主要面向机器人研究人员和高性能需求用户,依赖 NVIDIA GPU 进行加速,适用于大规模并行仿真和高精度物理任务,如机械臂仿真、机器人控制等。

选择合适的工具,能够帮助你更高效地完成任务和实验。根据任务的复杂性和硬件环境,选择 GymnasiumIsaac Gym 来进行强化学习和机器人控制研究。


五、如何选择?

  1. Gymnasium

    • 适用于普通强化学习任务,是 Gym 的直接替代品。
    • 社区活跃,未来支持有保障。
  2. Isaac Gym

    • 如果研究涉及机器人或高性能仿真,推荐使用 Isaac Gym。
    • 适合需要极高仿真速度的任务。
  3. Gym

    • 仅适用于旧代码。如果可能,建议迁移到 Gymnasium。

如果本文对你有帮助,请点赞、收藏并分享给更多小伙伴!

### 配置 IsaacGym 的方法 要在 PyCharm 中成功导入配置 IsaacGym,需要完成以下几个方面的设置: #### 1. 安装必要的依赖项 确保 Python 环境已正确安装所需的包。对于 IsaacGym 的支持库 `isaacgym-stubs`,可以通过以下命令进行安装[^3]: ```bash pip3 install isaacgym-stubs ``` 如果需要指定某个特定版本(例如 v1.0rc3),则可以执行如下命令: ```bash pip3 install isaacgym_stubs==1.0rc3 ``` 此外,还需要确认其他必要组件是否已经安装到位。例如,在某些情况下可能需要用到 Gymnasium Stable-Baselines3 组合来构建强化学习环境。根据引用中的测试数据[^2],推荐的版本组合为: - **gymnasium**: 1.0.0 - **numpy**: 1.26.4 - **stable-baselines3**: 2.4.1 这些工具可以帮助你在 PyCharm 中更高效地开发。 --- #### 2. 设置 PyCharm 的解释器 打开 PyCharm 并进入项目的设置界面 (`File -> Settings`),导航到 `Project: <your_project_name> -> Python Interpreter`。在此处选择或创建一个新的虚拟环境,并确保该环境包含了上述提到的所有必需软件包。 为了验证安装情况,可以在终端输入以下代码片段以检查模块是否存在并正常工作: ```python import omni.isaac.gym print("Omni Isaac Gym imported successfully.") try: import omni.isaac.core print("Omni Isaac Core also available!") except ImportError as e: print(f"Error importing Omni Isaac Core: {e}") ``` 注意:虽然通过运行 python.bat 可访问部分功能如 `omni.isaac.gym`[^1],但如果遇到无法加载 `omni.isaac.core` 的问题,则可能是由于路径未被正确识别或者缺少额外的支持文件所致。 --- #### 3. 调整项目结构与源码目录 为了让 PyCharm 正确解析来自外部资源(比如由 NVIDIA 提供的预编译二进制文件)的内容,应该将它们添加至项目的 source roots 列表里。具体操作步骤如下: - 进入菜单栏选项 `File -> Project Structure...`. - 添加包含目标头文件及动态链接库的位置作为新的 Content Root 或 Source Folder. 这样做的好处在于可以让 IDE 更好理解整个工程架构的同时减少潜在错误提示。 --- #### 4. 测试集成效果 最后一步就是编写简单的脚本来检验整体流程是否顺畅无误。下面给出一个基础示例用于启动模拟场景: ```python from omni.isaac.kit import SimulationApp # 创建默认仿真应用实例 simulation_app = SimulationApp({"headless": False}) if simulation_app.is_running(): try: from omni.isaac.core import World world = World(stage_units_in_meters=1.0) world.reset() while simulation_app.is_playing(): world.step(render=True) finally: simulation_app.close() else: raise RuntimeError("Simulation failed to start properly.") ``` 此段程序展示了如何初始化以及控制基本的世界对象循环更新过程。 --- ### 总结 综上所述,只要按照以上指导逐步实施就能顺利实现 IsaacGym 在 PyCharm 下的有效部署。当然实际过程中还可能会碰到更多细节上的差异调整需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值