大语言模型文献调研专栏目录

本专栏收录有关大语言模型相关的最新论文简介,以帮助相关领域的研究者快速了解行业动向和技术原理的简要介绍。为了便于读者查阅,这里整理了本专栏的文献目录,并随时更新。

CSDN专栏链接:http://t.csdnimg.cn/MWGtr

多模态大模型文献综述系列(更新中)

发表时间 文章来源 文章简称 文章标题 跳转正文
2023 arXiv - Video understanding with large language models: A survey 简介
2024 arXiv - MM-LLMs: Recent Advances in MultiModal Large Language Models 简介

多模态大模型方法系列(更新中)

<
### UNet 模型改进的最佳实践 #### 1. UNet++ 的改进思路 UNet 是一种经典的用于医学图像分割的神经网络架构,其核心特点是编码器-解码器结构以及跳跃连接的设计。然而,在实际应用中,UNet 存在一些局限性,例如特征融合不足和对复杂场景适应能力有限等问题。为了克服这些问题,研究人员提出了多种改进方案。 其中,UNet++ 是一种显著的改进版本[^2]。它通过引入密集跳过连接(dense skip connections),增强了不同尺度特征之间的交互作用。具体来说,UNet++ 将传统的单路径跳跃连接扩展为多路径跳跃连接,从而允许更深层次的信息流动。这种方法不仅提高了模型的表达能力,还减少了梯度消失的风险。 #### 2. 剪枝技术的应用 除了结构调整外,模型压缩也是 UNet 改进的重要方向之一。特别是在资源受限环境下(如移动端设备),减少模型大小而不损失性能显得尤为重要。剪枝是一种有效的模型压缩手段,可以通过移除冗余权重来降低计算成本和存储需求。 根据已有研究显示,当 L2 正则化后的效果与未正则化的 L4 层接近时,模型内存消耗可节省约 18 倍[^1]。这一发现表明合理运用正则化技术和剪枝策略能够显著改善 UNet 的效率。 以下是实现简单剪枝的一个 Python 示例代码片段: ```python import tensorflow as tf def prune_model(model, pruning_percentage=0.1): pruned_weights = [] for layer in model.layers: if isinstance(layer, tf.keras.layers.Conv2D): weights = layer.get_weights() # Calculate the threshold based on percentage to prune. weight_matrix = weights[0] flattened_weights = tf.reshape(weight_matrix, [-1]) k = int(tf.size(flattened_weights).numpy() * pruning_percentage) values, _ = tf.math.top_k(tf.abs(flattened_weights), k=k) mask = tf.cast(tf.greater_equal(tf.abs(weight_matrix), values[-1]), dtype=tf.float32) new_weight_matrix = tf.multiply(mask, weight_matrix) pruned_weights.append(new_weight_matrix.numpy()) else: pruned_weights.extend(layer.get_weights()) pruned_model = tf.keras.models.clone_model(model) pruned_model.set_weights(pruned_weights) return pruned_model ``` 此函数实现了基于绝对值大小的选择性删除操作,适用于 CNN 中常见的 Conv2D 类型图层。 #### 3. 大规模实验驱动的研究哲学 值得注意的是,无论是开发新架构还是优化现有算法,都需要遵循科学严谨的态度来进行探索。正如 UNet++ 论文作者所强调那样,“不应过分拘泥于特定超参设置”,而是应更多聚焦于整体设计理念及其背后逻辑思考过程。只有如此才能跳出局部最优陷阱,推动领域向前发展。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值