大模型理解与生成三维点云:CVPR2024论文《GPT4Point: A Unified Framework for Point-Language Understanding and Generation》
本文是关于CVPR2024最新论文《GPT4Point: A Unified Framework for Point-Language Understanding and Generation》的简要介绍。GPT4Point是让大模型理解与生成三维模型点云的经典作品,作者提出了 Pyramid-XL点云-语言标注引擎,以及数据规模超过1M的物体文本数据集,并且使用多种评价指标评测GPT4Point的点云理解和生成性能。
本文写于2024年4月15日。
文章目录
有关本专栏的更多内容,请参考大语言模型文献调研专栏目录
1. 论文基本信息
1.1 资源
题目:GPT4Point: A Unified Framework for Point-Language Understanding and Generation
链接:https://arxiv.org/pdf/2312.02980.pdf
代码:https://github.com/Pointcept/GPT4Point
项目:https://gpt4point.github.io/
文章引用:
@inproceedings{GPT4Point,
title={GPT4Point: A Unified Framework for Point-Language Understanding and Generation},
author={Zhangyang Qi and Ye Fang and Zeyi Sun and Xiaoyang Wu and Tong Wu and Jiaqi Wang and Dahua Lin and Hengshuang Zhao},
booktitle={CVPR},
year={2024},
}
1.2 动机
最近大语言模型(LLMs)在自然语言处理领域取得显著进展,后续研究者积极探索将大语言模型与其他模态进行结合,例如图像、音频、视频等。此外,视觉-语言模型(VLMs)通过图像-文本对进行大规模预训练,实现了文本图像的编码对应。基于大模型的多模态的生成任务也日新月异。然而,当来到三维世界,上述方法难免力不从心。
最近的一些工作将2D特征看做3D特征,造成几何精度损失,一些研究注重整体场景理解,主要关注对象的空间坐标而忽略了细节理解,其他工作例如PointBind等缺乏整体全面训练,PointLLM需要对语言模型组件进行训练,但缺乏文本生成能力。为此,作者提出了GPT4Point,用于点云-语言理解和生成。其要点为:
- GPT4Point是一种3D多模态大语言模型。GPT4Point引入了3D对象MLLM,完全利用点云执行各种点-文本任务。
- 点云文本对齐。利用基于Bert的Point-QFormer进行点-文本特征对齐,对齐的特征分别输入LLMs进行文本推理任务和Diffusion进行3D对象生成任务。
- 点云质量改善。输入低质量的点云特征作为条件,GPT4Point可以利用点云-文本对齐特征生成更高质量的结果,同时保持几何形状和颜色。
针对3D数据难以获取的问题,作者开发了一个数据注释引擎PyramidXL,其要点为:
- 基于Objaverse-XL数据集
- 解决了VLMs无法直接理解多视角图像的问题。
- 通过综合由VLMs获取的多视图的标题,文本注释从低到高被分层为三个层次,得到精确的注释。