KF卡尔曼与EKF扩展卡尔曼代码demo(几分钟就能让人人都会使用)

本文中代码均为C#实现,可自行换为其他语言。

1.KF,对数据自身或者有对应观测值的数据进行滤波(一维线性)

namespace ZaneCon.PredictedState.FeederState
{
    //本次卡尔曼针对的状态量与观测值均为特定情境下一维线性
    public class FeederKF
    {
        private double A; // 状态转移矩阵
        private double H; // 观测矩阵
        private double Q; // 状态噪声协方差矩阵
        private double R; // 观测噪声协方差矩阵
        private double P; // 状态估计协方差矩阵
        private double x; // 状态估计向量
        public FeederKF()
        {
            // 初始化矩阵和向量
  //因为一维线性,比如模型为y=2x或直接对数据过滤(没有线性关系,一组数据或两组数据——一组状态量+一组观测)
            A = 1;
            H = 1;
            Q = 0.1;
            R = 1;
            P = 1;
            x = 0;
        }
       //这里x为状态量,z为对应的观测数据
        public double Filter(double x, double z)
        {
            // 预测步骤
            double x_ = A * x;
            double P_ = A * P * A + Q;
            // 更新步骤
            double K = P_ * H / (H * P_ * H + R);
            x = x_ + K * (z - H * x_);
            P = (1 - K * H) * P_;
            return x;
        }
    }
}

上述例子应用对象为两组数据进行融合滤波,比如测得A组数据为一系列值——数组A,A组观测数据为一系列值——数组B,现融合A和B得到更准的A数据。

2.EKF,与KF相比就是A阵不同,一般对非线性模型进行线性化,其他步骤一模一样。

namespace ZaneCon.PredictedState.FeederState
{
    //EKF完整例子,用时修改状态量、量测量、维数及A阵即可
    public class FeederEKF
    {
        // 状态转移矩阵
        private Matrix<double> A; //状态转移矩阵
        private Matrix<double> H; // 观测矩阵
        private Matrix<double> Q; // 状态噪声协方差矩阵(肯定与状态量维数一样)
        private Matrix<double> R; // 观测噪声协方差矩阵(肯定与观测量维数一样)
        private Matrix<double> P; // 状态估计协方差矩阵
        private Matrix<double> X; // 状态估计向量6维,量测2维

        public FeederEKF()
        {
            // 初始化矩阵和向量
            A = DenseMatrix.CreateIdentity(6);//6*6的单位阵,状态维度*状态维度
            H = Matrix<double>.Build.DenseOfArray(new double[,] { { 1, 0, 0, 0, 0, 0 }, { 0, 1, 0, 0, 0, 0 } });//2*6,量测维度*状态维度
            Q = DenseMatrix.CreateIdentity(6);//6*6状态噪声协方差矩阵,状态维度*状态维度
            R = Matrix<double>.Build.DenseOfArray(new double[,] { { 1, 0 }, { 0, 1 } });//2*2观测噪声协方差矩阵,量测维度*量测维度
            // 状态估计协方差矩阵,状态维度*状态维度
            P = Matrix<double>.Build.DenseOfArray(new double[,] { { 10, 0, 0, 0, 0, 0 }, { 0, 10, 0, 0, 0, 0 }, { 0, 0, 10, 0, 0, 0 }, { 0, 0, 0, 10, 0, 0 }, { 0, 0, 0, 0, 10, 0 }, { 0, 0, 0, 0, 0, 10 } });
            X = Matrix<double>.Build.Dense(6, 1, 0.0); ;//6*1
        }
      //此处状态量为x、y、thta、v、w、a,观测量为z_x、z_y
        public Matrix<double> Filter(double x, double y, double thta, double v, double w, double a, double delta_t, double z_x, double z_y)
        {
            /* 此处状态量及其机械编排(离散化)为:x=x+v*Cos(thta);
                         y=y+v*Sin(thta);
                         thta=thta+wt;
                         v=v+at;
                         w
                         a
               量测为x,y;
             */
            A[0, 2] = -v * Asin(thta);//thta必须在-1~1之间,不然出现NAN
            A[0, 3] = Acos(thta);
            A[1, 2] = v * Acos(thta);
            A[1, 3] = Asin(thta);
            A[3, 4] = delta_t;
            A[4, 5] = delta_t;
            Matrix<double> Z = Matrix<double>.Build.DenseOfArray(new double[,] { { z_x }, { z_y } });//量测阵
            X = Matrix<double>.Build.DenseOfArray(new double[,] { { x }, { y }, { thta }, { v }, { w }, { a } });
            // 预测步骤
            Matrix<double> X_ = A * X;
            Matrix<double> P_ = A * P * A.Transpose() + Q;
            // 更新步骤
            Matrix<double> K = (P_ * H.Transpose()) * (H * P_ * H.Transpose() + R).Inverse();
            X = X_ + K * (Z - H * X_);
            P = (1 - K * H) * P_;
            return X;
        }
    }
}

使用EKF一定要注意各个阵的维度设置,另外A阵雅可比的计算依赖于机械编排(模型式子求偏导),至于雅可比矩阵的排列可以不懂的可以百度一样,很简单。A阵求出来后,直接套用公式即可,与KF一样。
此处的例子是通过状态量间接算出测量值xy,然后与观测值xy进行融合滤波,得到更精确的xy。比如通过imu计算得到的xy与GPS得到的xy进行融合。

通过上述demo,现在是不是觉得晦涩难懂的理论在应用起来却是非常简单呢?

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: EKF扩展卡尔曼滤波器)是一种在非线性系统中进行状态估计的滤波器,它通过使用线性近似来处理非线性的过程和测量模型。 在MATLAB中实现EKF,您可以按照以下步骤进行: 1. 定义初始状态估计(均值和协方差矩阵),这是过程模型中的状态变量和其对应的噪声。 2. 编写系统模型函数,该函数应该返回系统转移矩阵、噪声协方差矩阵和状态转移函数。 3. 编写过程模型函数,该函数应该根据系统模型给定的状态转移函数和噪声协方差矩阵,计算状态估计的更新,并返回更新后的状态估计。 4. 定义观测模型函数,该函数应该返回测量模型的观测矩阵和噪声协方差矩阵。 5. 编写测量模型函数,该函数应该根据观测模型给定的观测矩阵和噪声协方差矩阵,计算观测估计的更新,并返回更新后的观测估计。 6. 在主程序中,按照以下步骤循环执行: a. 使用过程模型函数进行状态估计的更新。 b. 使用测量模型函数进行观测估计的更新。 c. 进行状态与观测的合并更新,得到最终的状态估计和协方差矩阵。 MATLAB中有一些优秀的开源库可以实现EKF,例如Robotics System Toolbox等。这些库提供了封装好的函数和示例,使您可以更轻松地实现EKF代码。 通过以上步骤和使用现有的开源库,您可以实现EKF滤波器的MATLAB代码。 ### 回答2: EKF是指扩展卡尔曼滤波器(Extended Kalman Filter),是将卡尔曼滤波器用于非线性系统的一种扩展EKF算法是基于卡尔曼滤波器的拓展,通过将非线性系统进行线性化来实现滤波。它使用非线性系统的近似线性模型,并通过不断迭代的线性近似来提高滤波效果。 在MATLAB中实现EKF算法,需要以下几个步骤: 1. 构建系统模型:首先,需要定义状态方程和观测方程。状态方程描述了系统的动态行为,而观测方程描述了系统观测到的数据和状态之间的关系。 2. 初始化参数:设置初始状态向量、初始协方差矩阵和系统噪声和观测噪声的协方差矩阵。初始状态向量和协方差矩阵可以由先验知识或测量数据进行估计。 3. 迭代计算:利用EKF算法的迭代过程进行滤波。首先,使用状态方程对状态向量进行预测,并更新预测协方差矩阵。然后,利用观测方程进行状态修正,并更新修正后的状态向量和协方差矩阵。然后,将修正后的状态向量和协方差矩阵作为下一次迭代的初始值。 4. 循环迭代:根据所需的滤波周期,持续地进行迭代计算,直到达到所需的滤波效果。 MATLAB中有一些工具箱、函数和示例代码可供使用,如`ekf`函数和`ExtendedKalmanFilter`类等。这些工具可以简化EKF算法实现过程。 总之,通过在MATLAB中实现EKF算法,我们可以利用该算法对非线性系统进行滤波,从而准确地估计系统的状态并提高预测效果。 ### 回答3: EKf(Extended Kalman Filter)是一种卡尔曼滤波器的扩展版本,用于处理非线性系统模型。在MATLAB中,可以使用以下步骤来实现EKf代码: 1. 定义系统模型和观测模型的状态和观测变量。这些变量通常表示为向量或矩阵形式。 2. 初始化初始状态估计值和协方差矩阵。 3. 在每个时间步进行以下循环: a. 预测阶段:使用系统模型和上一个时间步的状态估计值进行预测,得到预测的状态估计值和协方差矩阵。 b. 更新阶段:使用预测的状态估计值和观测模型计算卡尔曼增益,并使用观测值来更新状态估计值和协方差矩阵。 4. 重复步骤3,直到达到预定的时间步数或收敛条件。 EKf代码实现过程中需要使用MATLAB的数值计算和矩阵运算函数,例如矩阵乘法、转置、逆矩阵等。 最后,需要注意的是EKf代码实现可能因为不同的系统模型和观测模型而有所不同,因此具体的实现细节需要根据具体的应用进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

定位算法工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值