递归状态估计-概率

2022-1-15更新

  • 随机变量的随机表示常用 p ( x ) = p ( X = x ) p(x)=p(X=x) p(x)=p(X=x)
  • 常用公式
    • P ( A ) = P ( A ∣ B 1 ) + P ( A ∣ B 2 ) + . . . + P ( A ∣ B n ) P(A)=P(A|B_1)+P(A|B_2)+...+P(A|B_n) P(A)=P(AB1)+P(AB2)+...+P(ABn)
    • P ( A B ) = P ( A , B ) = P ( A ) P ( B ∣ A ) = P ( B ) P ( A ∣ B ) P(AB)=P(A,B)=P(A)P(B|A)=P(B)P(A|B) P(AB)=P(A,B)=P(A)P(BA)=P(B)P(AB)
      • 贝叶斯公式第一个版本 P ( B ∣ A ) = P ( A , B ) P ( A ) = P ( B ) P ( A ∣ B ) P ( A ) P(B|A)=\frac{P(A,B)}{P(A)}=\frac{P(B)P(A|B)}{P(A)} P(BA)=P(A)P(A,B)=P(A)P(B)P(AB)
      • 贝叶斯公式第二个版本 P ( B i ∣ A ) = P ( A , B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(B_i|A)=\frac{P(A,B_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{\sum_{i=1}^{n}P(B_i)P(A|B_i)} P(BiA)=P(A)P(A,Bi)=i=1nP(Bi)P(ABi)P(Bi)P(ABi)
    • P ( A , B , C ) = P ( C , A , B ) = P ( C ∣ A , B ) P ( A , B ) = P ( C ∣ A , B ) P ( B , A ) = P ( C ∣ A , B ) P ( B ∣ A ) P ( A ) P(A,B,C)=P(C,A,B)=P(C|A,B)P(A,B)=P(C|A,B)P(B,A)=P(C|A,B)P(B|A)P(A) P(A,B,C)=P(C,A,B)=P(CA,B)P(A,B)=P(CA,B)P(B,A)=P(CA,B)P(BA)P(A)
      • 多变量贝叶斯公式 P ( A ∣ B , C ) = P ( A , B , C ) P ( B , C ) = P ( C ∣ A , B ) P ( B ∣ A ) P ( A ) P ( B ) P ( C ∣ B ) P(A|B,C)=\frac{P(A,B,C)}{P(B,C)}=\frac{P(C|A,B)P(B|A)P(A)}{P(B)P(C|B)} P(AB,C)=P(B,C)P(A,B,C)=P(B)P(CB)P(CA,B)P(BA)P(A)
  • 概率密度函数 PDF (Probability Density Function)
  • 正态分布经常被缩写为 N ( x ; μ , σ 2 ) N(x;\mu,\sigma^2) N(x;μ,σ2)
  • 多元正态分布 p ( x ) = d e t ( 2 π Σ ) − 1 2 e x p { − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) } p(x)=det(2\pi\Sigma)^{-\frac{1}{2}} exp\{ -\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)\} p(x)=det(2πΣ)21exp{21(xμ)TΣ1(xμ)}
  • 条件概率 p ( x ∣ y ) = p ( x , y ) p ( y ) p(x|y)=\frac{p(x,y)}{p(y)} p(xy)=p(y)p(x,y)
  • 贝叶斯公式 p ( x ∣ y ) = p ( y ∣ x ) p ( x ) p ( y ) p(x|y)=\frac{p(y|x)p(x)}{p(y)} p(xy)=p(y)p(yx)p(x)= η p ( y ∣ x ) p ( x ) \eta p(y|x)p(x) ηp(yx)p(x)
    • p ( x ∣ y ) p(x|y) p(xy)称为后验概率
    • p ( y ∣ x ) p(y|x) p(yx)称为似然概率
    • p ( x ) p(x) p(x)称为先验概率
    • 通常把 1 p ( y ) \frac{1}{p(y)} p(y)1 称为归一化系数 η \eta η
  • 协方差衡量的是偏离均值的二次方期望
    • H p ( x ) = E [ − log ⁡ 2 p ( x ) ] H_p (x)=E[- \log_2p(x)] Hp(x)=E[log2p(x)]
  • 马尔可夫链(Markov chain),简单的一阶马氏性认为, k k k 时刻状态只与 k − 1 k-1 k1 时刻状态有关,而与再之前的无关
  • z t 1 : t 2 = z t 1 , z t 1 + 1 , z t 1 + 2 , z t 1 + 3 , . . . , z t 2 z_{t_1:t_2}=z_{t_1},z_{t_1+1},z_{t_1+2},z_{t_1+3},... ,z_{t_2} zt1:t2=zt1,zt1+1,zt1+2,zt1+3,...,zt2
    • 表示从时间 t 1 t_1 t1 到时间 t 2 t_2 t2 获得的所有测量的集合
  • 置信度
    • 反应了机器人有关环境状态的内部信息
    • 概率机器人通过条件概率分布表示置信度
    • b e l ( x t ) = p ( x t ∣ z 1 : t , u 1 : t ) bel(x_t)=p(x_t|z_{1:t},u_{1:t}) bel(xt)=p(xtz1:t,u1:t)
    • b e l ‾ ( x t ) = p ( x t ∣ z 1 : t − 1 , u 1 : t ) \overline{bel}(x_t)=p(x_t|z_{1:t-1},u_{1:t}) bel(xt)=p(xtz1:t1,u1:t)这个概率通常被称为预测(prediction)
    • b e l ‾ ( x t ) \overline{bel}(x_t) bel(xt)计算 b e l ( x t ) bel(x_t) bel(xt)称为修正或者测量更新

https://blog.csdn.net/CSSDCC/article/details/122180368

参考:
视觉SLAM十四讲
多变量贝叶斯公式推导
状态估计公式9.5的推导

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值