可测函数列的依测度收敛性

定义1: f ( x ) , f 1 ( x ) , f 2 ( x ) , ⋯   , f k ( x ) , ⋯ f(x),f_1(x),f_2(x),\cdots,f_k(x),\cdots f(x),f1(x),f2(x),,fk(x),是可测集 E E E上几乎处处有限的可测函数,若对于任意给定的 ε > 0 \varepsilon > 0 ε>0,有 lim ⁡ k → ∞ m ( E ∣ f k − f ∣ > ε ) = 0 , \lim\limits_{k \rightarrow \infty}m(E|f_k -f|> \varepsilon)=0, klimm(Efkf>ε)=0,则称 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上依测度收敛到函数 f ( x ) f(x) f(x),记为 f k ⟶ m f f_k \stackrel{\mathrm{m}}{\longrightarrow}f fkmf

定理1: 若函数列 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上依测度收敛于函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),则 f ( x ) f(x) f(x) g ( x ) g(x) g(x)几乎处处相等。

定理2: 设函数列 { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E E E上的几乎处处有限的可测集函数列且 m ( E ) < ∞ m(E)< \infty m(E)<。若 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上几乎处处收敛,则 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上依测度收敛于同一极限函数。

定理3(Riesz定理): f ( x ) , { f k ( x ) } f(x),\{f_k(x)\} f(x),{fk(x)}是可测集 E E E上几乎处处有限的可测函数列。若 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上依测度收敛于 f ( x ) f(x) f(x),则存在子列 { f k i ( x ) } \{f_{k_i}(x)\} {fki(x)},使得 lim ⁡ i → ∞ f k i ( x ) = f ( x ) , a . e . [ E ] . \lim\limits_{i \rightarrow \infty}f_{k_i}(x)=f(x),\quad \mathrm{a.e.}{[E]}. ilimfki(x)=f(x),a.e.[E].

定义2: { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E E E上几乎处处有限的可测函数列。对任给的 ε > 0 \varepsilon >0 ε>0,有 lim ⁡ k , j → ∞ m ( E ( ∣ f k − f j ∣ ) > ε ) = 0 \lim\limits_{k,j\rightarrow \infty}m(E(|f_k-f_j|)>\varepsilon)=0 k,jlimm(E(fkfj)>ε)=0则称 { f k ( x ) } \{f_k(x)\} {fk(x)} E E E上的依测度基本列。

定理4: { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E E E上几乎处处有限的可测函数列,则 { f k ( x ) } \{f_k(x)\} {fk(x)}是依测度收敛的充分必要条件是,它还是依测度基本列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值