定义1: 设 f ( x ) , f 1 ( x ) , f 2 ( x ) , ⋯ , f k ( x ) , ⋯ f(x),f_1(x),f_2(x),\cdots,f_k(x),\cdots f(x),f1(x),f2(x),⋯,fk(x),⋯是可测集 E E E上几乎处处有限的可测函数,若对于任意给定的 ε > 0 \varepsilon > 0 ε>0,有 lim k → ∞ m ( E ∣ f k − f ∣ > ε ) = 0 , \lim\limits_{k \rightarrow \infty}m(E|f_k -f|> \varepsilon)=0, k→∞limm(E∣fk−f∣>ε)=0,则称 { f k ( x ) } \{f_k(x)\} {fk(x)}在 E E E上依测度收敛到函数 f ( x ) f(x) f(x),记为 f k ⟶ m f f_k \stackrel{\mathrm{m}}{\longrightarrow}f fk⟶mf。
定理1: 若函数列 { f k ( x ) } \{f_k(x)\} {fk(x)}在 E E E上依测度收敛于函数 f ( x ) f(x) f(x)与 g ( x ) g(x) g(x),则 f ( x ) f(x) f(x)与 g ( x ) g(x) g(x)几乎处处相等。
定理2: 设函数列 { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E E E上的几乎处处有限的可测集函数列且 m ( E ) < ∞ m(E)< \infty m(E)<∞。若 { f k ( x ) } \{f_k(x)\} {fk(x)}在 E E E上几乎处处收敛,则 { f k ( x ) } \{f_k(x)\} {fk(x)}在 E E E上依测度收敛于同一极限函数。
定理3(Riesz定理): 设 f ( x ) , { f k ( x ) } f(x),\{f_k(x)\} f(x),{fk(x)}是可测集 E E E上几乎处处有限的可测函数列。若 { f k ( x ) } \{f_k(x)\} {fk(x)}在 E E E上依测度收敛于 f ( x ) f(x) f(x),则存在子列 { f k i ( x ) } \{f_{k_i}(x)\} {fki(x)},使得 lim i → ∞ f k i ( x ) = f ( x ) , a . e . [ E ] . \lim\limits_{i \rightarrow \infty}f_{k_i}(x)=f(x),\quad \mathrm{a.e.}{[E]}. i→∞limfki(x)=f(x),a.e.[E].
定义2: 设 { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E E E上几乎处处有限的可测函数列。对任给的 ε > 0 \varepsilon >0 ε>0,有 lim k , j → ∞ m ( E ( ∣ f k − f j ∣ ) > ε ) = 0 \lim\limits_{k,j\rightarrow \infty}m(E(|f_k-f_j|)>\varepsilon)=0 k,j→∞limm(E(∣fk−fj∣)>ε)=0则称 { f k ( x ) } \{f_k(x)\} {fk(x)}是 E E E上的依测度基本列。
定理4: 设 { f k ( x ) } \{f_k(x)\} {fk(x)}是可测集 E E E上几乎处处有限的可测函数列,则 { f k ( x ) } \{f_k(x)\} {fk(x)}是依测度收敛的充分必要条件是,它还是依测度基本列。