参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
3. z z z变换理论
3.1 z z z变换定义
设连续函数
e
(
t
)
e(t)
e(t)是可拉氏变换的,则拉氏变换定义为:
E
(
s
)
=
∫
0
∞
e
(
t
)
e
−
s
t
d
t
E(s)=\int_0^{\infty}e(t){\rm e}^{-st}{\rm d}t
E(s)=∫0∞e(t)e−stdt
采样信号表达式为:
e
∗
(
t
)
=
∑
n
=
0
∞
e
(
n
T
)
δ
(
t
−
n
T
)
e^*(t)=\sum_{n=0}^{\infty}e(nT)\delta(t-nT)
e∗(t)=n=0∑∞e(nT)δ(t−nT)
采样信号
e
∗
(
t
)
e^*(t)
e∗(t)的拉氏变换为:
E
∗
(
s
)
=
∑
n
=
0
∞
e
(
n
T
)
e
−
n
s
T
E^*(s)=\sum_{n=0}^{\infty}e(nT){\rm e}^{-nsT}
E∗(s)=n=0∑∞e(nT)e−nsT
令
z
=
e
s
T
z={\rm e}^{sT}
z=esT,
T
T
T为采样周期,
z
z
z是在复数平面上定义的一个复变量,称为
z
z
z变换算子;
采样信号
e
∗
(
t
)
e^*(t)
e∗(t)的
z
z
z变换定义为:
E
(
z
)
=
E
∗
(
s
)
∣
s
=
1
T
ln
z
=
∑
n
=
0
∞
e
(
n
T
)
z
−
n
E(z)=E^*(s)|_{s=\frac{1}{T}\ln{z}}=\sum_{n=0}^{\infty}e(nT)z^{-n}
E(z)=E∗(s)∣s=T1lnz=n=0∑∞e(nT)z−n
3.2 z z z变换方法
-
级数求和法
级数求和法直接根据 z z z变换的定义,将上式写成展开形式:
E ( z ) = e ( 0 ) + e ( T ) z − 1 + e ( 2 T ) z − 2 + ⋯ + e ( n T ) z − n + ⋯ + E(z)=e(0)+e(T)z^{-1}+e(2T)z^{-2}+\dots+e(nT)z^{-n}+\dots+ E(z)=e(0)+e(T)z−1+e(2T)z−2+⋯+e(nT)z−n+⋯+
实例分析:E x a m p l e 1 : {\rm Example1:} Example1: 求单位阶跃函数 1 ( t ) 1(t) 1(t)的 z z z变换。
解:
依题意可得, e ( n T ) = 1 ( n = 0 , 1 , 2 , … , ∞ ) e(nT)=1(n=0,1,2,\dots,\infty) e(nT)=1(n=0,1,2,…,∞),可得:
E ( z ) = 1 + z − 1 + z − 2 + ⋯ + z − n + ⋯ + E(z)=1+z^{-1}+z^{-2}+\dots+z^{-n}+\dots+ E(z)=1+z−1+z−2+⋯+z−n+⋯+
在上式中,若 ∣ z − 1 ∣ < 1 |z^{-1}|<1 ∣z−1∣<1,则无穷级数是收敛的,利用等比级数求和公式,可得 1 ( t ) 1(t) 1(t)的 z z z变换的闭合形式:
E ( z ) = 1 1 − z − 1 = z z − 1 E(z)=\frac{1}{1-z^{-1}}=\frac{z}{z-1} E(z)=1−z−11=z−1z
实例分析:E x a m p l e 2 : {\rm Example2:} Example2: 设 e ( t ) = δ T ( t ) = ∑ n = 0 ∞ δ ( t − n T ) e(t)=\delta_T(t)=\sum_{n=0}^{\infty}\delta(t-nT) e(t)=δT(t)=∑n=0∞δ(t−nT),求理想脉冲序列 δ T ( t ) \delta_T(t) δT(t)的 z z z变换。
解:
依题意可得:
e ∗ ( t ) = δ T ( t ) = ∑ n = 0 ∞ δ ( t − n T ) e^*(t)=\delta_T(t)=\sum_{n=0}^{\infty}\delta(t-nT) e∗(t)=δT(t)=n=0∑∞δ(t−nT)
由拉氏变换可知:
E ∗ ( s ) = ∑ n = 0 ∞ e − n s T E^*(s)=\sum_{n=0}^{\infty}e^{-nsT} E∗(s)=n=0∑∞e−nsT
因此:
E ( z ) = ∑ n = 0 ∞ z − n = 1 + z − 1 + z − 2 + ⋯ + E(z)=\sum_{n=0}^{\infty}z^{-n}=1+z^{-1}+z^{-2}+\dots+ E(z)=n=0∑∞z−n=1+z−1+z−2+⋯+
将上式写出闭合形式,可得 δ T ( t ) \delta_T(t) δT(t)的 z z z变换为:
E ( z ) = 1 1 − z − 1 = z z − 1 , ∣ z − 1 ∣ < 1 E(z)=\frac{1}{1-z^{-1}}=\frac{z}{z-1},\left|z^{-1}\right|<1 E(z)=1−z−11=z−1z, z−1 <1
由实例可知,相同的 z z z变换 E ( z ) E(z) E(z)对应于相同的采样函数 e ∗ ( t ) e^*(t) e∗(t),但不一定对应于相同的连续函数 e ( t ) e(t) e(t); -
部分分式法
先求出已知连续时间函数 e ( t ) e(t) e(t)的拉氏变换 E ( s ) E(s) E(s),再将有理分式函数 E ( s ) E(s) E(s)展成部分分式之和的形式,使每一部分分式对应简单的时间函数,然后可得各部分对应的 z z z变换,即可求出 E ( s ) E(s) E(s)对应的 z z z变换 E ( z ) E(z) E(z);
实例分析:
E x a m p l e 3 : {\rm Example3:} Example3: 设 e ( t ) = sin ω t e(t)=\sin\omega{t} e(t)=sinωt,求 E ( z ) E(z) E(z)。
解:
对 e ( t ) = sin ω t e(t)=\sin\omega{t} e(t)=sinωt取拉氏变换,可得:
E ( s ) = ω s 2 + ω 2 E(s)=\frac{\omega}{s^2+\omega^2} E(s)=s2+ω2ω
将上式展开为部分分式:
E ( s ) = 1 2 j ( 1 s − j ω − 1 s + j ω ) E(s)=\frac{1}{2{\rm j}}\left(\frac{1}{s-{\rm j}\omega}-\frac{1}{s+{\rm j}\omega}\right) E(s)=2j1(s−jω1−s+jω1)
可得:
E ( z ) = 1 2 j ( z z − e j ω T − z z − e − j ω T ) = 1 2 j [ z ( e j ω T − e − j ω T ) z 2 − z ( e j ω T + e − j ω T ) + 1 ] E(z)=\frac{1}{2{\rm j}}\left(\frac{z}{z-{\rm e}^{{\rm j}\omega{T}}}-\frac{z}{z-{\rm e}^{-{\rm j}\omega{T}}}\right)=\frac{1}{2{\rm j}}\left[\frac{z({\rm e}^{{\rm j}\omega{T}}-{\rm e}^{-{\rm j}\omega{T}})}{z^2-z({\rm e}^{{\rm j}\omega{T}}+e^{-{\rm j}\omega{T}})+1}\right] E(z)=2j1(z−ejωTz−z−e−jωTz)=2j1[z2−z(ejωT+e−jωT)+1z(ejωT−e−jωT)]
化简:
E ( z ) = z sin ω T z 2 − 2 z cos ω T + 1 E(z)=\frac{z\sin\omega{T}}{z^2-2z\cos\omega{T}+1} E(z)=z2−2zcosωT+1zsinωT
3.3 z z z变换表
序号 序号 序号 | 时间函数 e ( t ) 时间函数e(t) 时间函数e(t) | 拉普拉斯变换 E ( s ) 拉普拉斯变换E(s) 拉普拉斯变换E(s) | z 变换 E ( z ) z变换E(z) z变换E(z) |
---|---|---|---|
1 1 1 | δ ( t − n T ) \delta(t-nT) δ(t−nT) | e − s n T {\rm e}^{-snT} e−snT | z − n z^{-n} z−n |
2 2 2 | δ ( t ) \delta(t) δ(t) | 1 1 1 | 1 1 1 |
3 3 3 | 1 ( t ) 1(t) 1(t) | 1 s \displaystyle\frac{1}{s} s1 | z z − 1 \displaystyle\frac{z}{z-1} z−1z |
4 4 4 | t t t | 1 s 2 \displaystyle\frac{1}{s^2} s21 | T z ( z − 1 ) 2 \displaystyle\frac{Tz}{(z-1)^2} (z−1)2Tz |
5 5 5 | t 2 2 ! \displaystyle\frac{t^2}{2!} 2!t2 | 1 s 3 \displaystyle\frac{1}{s^3} s31 | T 2 z ( z + 1 ) 2 ( z − 1 ) 3 \displaystyle\frac{T^2z(z+1)}{2(z-1)^3} 2(z−1)3T2z(z+1) |
6 6 6 | a t / T a^{t/T} at/T | 1 s − ( 1 / T ) ln a \displaystyle\frac{1}{s-(1/T)\ln{a}} s−(1/T)lna1 | z z − a \displaystyle\frac{z}{z-a} z−az |
7 7 7 | e − a t {\rm e}^{-at} e−at | 1 s + a \displaystyle\frac{1}{s+a} s+a1 | z z − e − a T \displaystyle\frac{z}{z-{\rm e}^{-aT}} z−e−aTz |
8 8 8 | t e − a t t{\rm e}^{-at} te−at | 1 ( s + a ) 2 \displaystyle\frac{1}{(s+a)^2} (s+a)21 | T z e − a T ( z − e − a T ) 2 \displaystyle\frac{Tz{\rm e}^{-aT}}{(z-{\rm e}^{-aT})^2} (z−e−aT)2Tze−aT |
9 9 9 | 1 2 t 2 e − a t \displaystyle\frac{1}{2}t^2{\rm e}^{-at} 21t2e−at | 1 ( s + a ) 3 \displaystyle\frac{1}{(s+a)^3} (s+a)31 | T 2 z e − a T 2 ( z − e − a T ) 2 + T 2 z e − 2 a T ( z − e − a T ) 3 \displaystyle\frac{T^2z{\rm e}^{-aT}}{2(z-{\rm e}^{-aT})^2}+\frac{T^2z{\rm e}^{-2aT}}{(z-{\rm e}^{-aT})^3} 2(z−e−aT)2T2ze−aT+(z−e−aT)3T2ze−2aT |
10 10 10 | 1 − e − a t 1-{\rm e}^{-at} 1−e−at | a s ( s + a ) \displaystyle\frac{a}{s(s+a)} s(s+a)a | ( 1 − e − a T ) z ( z − 1 ) ( z − e − a T ) \displaystyle\frac{(1-e^{-aT})z}{(z-1)(z-e^{-aT})} (z−1)(z−e−aT)(1−e−aT)z |
11 11 11 | sin ω t \sin\omega{t} sinωt | ω s 2 + ω 2 \displaystyle\frac{\omega}{s^2+\omega^2} s2+ω2ω | z sin ω T z 2 − 2 z cos ω T + 1 \displaystyle\frac{z\sin\omega{T}}{z^2-2z\cos\omega{T}+1} z2−2zcosωT+1zsinωT |
12 12 12 | cos ω t \cos\omega{t} cosωt | s s 2 + ω 2 \displaystyle\frac{s}{s^2+\omega^2} s2+ω2s | z ( z − cos ω T ) z 2 − 2 z cos ω T + 1 \displaystyle\frac{z(z-\cos\omega{T})}{z^2-2z\cos\omega{T}+1} z2−2zcosωT+1z(z−cosωT) |
13 13 13 | 1 − cos ω t 1-\cos\omega{t} 1−cosωt | ω 2 s ( s 2 + ω 2 ) \displaystyle\frac{\omega^2}{s(s^2+\omega^2)} s(s2+ω2)ω2 | z z − 1 − z ( z − cos ω T ) z 2 − 2 z cos ω T + 1 \displaystyle\frac{z}{z-1}-\frac{z(z-\cos\omega{T})}{z^2-2z\cos\omega{T}+1} z−1z−z2−2zcosωT+1z(z−cosωT) |
14 14 14 | e − a t sin ω t {\rm e}^{-at}\sin\omega{t} e−atsinωt | ω ( s + a ) 2 + ω 2 \displaystyle\frac{\omega}{(s+a)^2+\omega^2} (s+a)2+ω2ω | z e − a t sin ω T z 2 − 2 z e − a t cos ω T + e − 2 a T \displaystyle\frac{z{\rm e}^{-at}\sin\omega{T}}{z^2-2z{\rm e}^{-at}\cos\omega{T}+{\rm e}^{-2aT}} z2−2ze−atcosωT+e−2aTze−atsinωT |
15 15 15 | e − a t cos ω t {\rm e}^{-at}\cos\omega{t} e−atcosωt | s + a ( s + a ) 2 + ω 2 \displaystyle\frac{s+a}{(s+a)^2+\omega^2} (s+a)2+ω2s+a | z 2 − z e − a T cos ω T z 2 − 2 z e − a T cos ω T + e − 2 a T \displaystyle\frac{z^2-z{\rm e}^{-aT}\cos\omega{T}}{z^2-2z{\rm e}^{-aT}\cos\omega{T}+{\rm e}^{-2aT}} z2−2ze−aTcosωT+e−2aTz2−ze−aTcosωT |
3.4 z z z变换性质
-
线性定理
若 E 1 ( z ) = Z [ e 1 ( t ) ] , E 2 ( z ) = Z [ e 2 ( t ) ] , a E_1(z)=Z[e_1(t)],E_2(z)=Z[e_2(t)],a E1(z)=Z[e1(t)],E2(z)=Z[e2(t)],a为常数,则:
Z [ e 1 ( t ) ± e 2 ( t ) ] = E 1 ( z ) ± E 2 ( z ) ; Z [ a e ( t ) ] = a E ( z ) ,式中 : E ( z ) = Z [ e ( t ) ] Z[e_1(t)±e_2(t)]=E_1(z)±E_2(z);Z[ae(t)]=aE(z),式中:E(z)=Z[e(t)] Z[e1(t)±e2(t)]=E1(z)±E2(z);Z[ae(t)]=aE(z),式中:E(z)=Z[e(t)] -
实数位移定理(平移定理)
实数位移含义:整个采样序列在时间轴上左右平移若干个采样周期,其中向左平移为超前,向右平移为滞后;如果函数 e ( t ) e(t) e(t)是可拉普拉斯变换的,其 z z z变换为 E ( z ) E(z) E(z),则有:
Z [ e ( t − k T ) ] = z − k E ( z ) ; Z [ e ( t + k T ) ] = z k [ E ( z ) − ∑ n = 1 k − 1 e ( n T ) z − n ] Z[e(t-kT)]=z^{-k}E(z);Z[e(t+kT)]=z^k[E(z)-\sum_{n=1}^{k-1}e(nT)z^{-n}] Z[e(t−kT)]=z−kE(z);Z[e(t+kT)]=zk[E(z)−n=1∑k−1e(nT)z−n] -
复数位移定理
如果函数 e ( t ) e(t) e(t)是可拉普拉斯变换的,其 z z z变换为 E ( z ) E(z) E(z),则有:
Z [ e ∓ a t e ( t ) ] = E ( z e ± a T ) Z[{\rm e}^{\mp{at}}e(t)]=E(z{\rm e}^{\pm{aT}}) Z[e∓ate(t)]=E(ze±aT) -
终值定理
如果函数 e ( t ) e(t) e(t)的 z z z变换为 E ( z ) E(z) E(z),函数序列 e ( n T ) e(nT) e(nT)为有限值 ( n = 0 , 1 , 2 , … ) (n=0,1,2,\dots) (n=0,1,2,…),且极限 lim n → ∞ e ( n T ) \displaystyle\lim_{n\rightarrow\infty}e(nT) n→∞lime(nT)存在,则函数序列的终值:
lim n → ∞ e ( n T ) = lim z → 1 ( z − 1 ) E ( z ) \lim_{n\rightarrow\infty}e(nT)=\lim_{z\rightarrow1}(z-1)E(z) n→∞lime(nT)=z→1lim(z−1)E(z) -
卷积定理
设 x ( n T ) x(nT) x(nT)和 y ( n T ) y(nT) y(nT)为两个采样函数,其离散卷积积分定义为:
x ( n T ) ∗ y ( n T ) = ∑ k = 0 ∞ x ( k T ) y [ ( n − k ) T ] x(nT)*y(nT)=\sum_{k=0}^{\infty}x(kT)y[(n-k)T] x(nT)∗y(nT)=k=0∑∞x(kT)y[(n−k)T]
则卷积定理如下:若
g ( n T ) = x ( n T ) ∗ y ( n T ) g(nT)=x(nT)*y(nT) g(nT)=x(nT)∗y(nT)
则有:
G ( z ) = X ( z ) ⋅ Y ( z ) G(z)=X(z)·Y(z) G(z)=X(z)⋅Y(z)
其中:
X ( z ) = ∑ k = 0 ∞ x ( k T ) z − k , Y ( z ) = ∑ n = 0 ∞ y ( n T ) z − n , G ( z ) = Z [ g ( n T ) ] = Z [ x ( n T ) ∗ y ( n T ) ] X(z)=\sum_{k=0}^{\infty}x(kT)z^{-k},Y(z)=\sum_{n=0}^{\infty}y(nT)z^{-n},G(z)=Z[g(nT)]=Z[x(nT)*y(nT)] X(z)=k=0∑∞x(kT)z−k,Y(z)=n=0∑∞y(nT)z−n,G(z)=Z[g(nT)]=Z[x(nT)∗y(nT)]
3.5 z z z反变换
z
z
z反变换:已知
z
z
z变换表达式
E
(
z
)
E(z)
E(z)求相应离散序列
e
(
n
T
)
e(nT)
e(nT)的过程,记为:
e
(
n
T
)
=
Z
−
1
[
E
(
z
)
]
e(nT)=Z^{-1}[E(z)]
e(nT)=Z−1[E(z)]
-
部分分式法(查表法)
设已知的 z z z变换函数 E ( z ) E(z) E(z)无重极点,求出 E ( z ) E(z) E(z)的极点为 z 1 , z 2 , … , z n z_1,z_2,\dots,z_n z1,z2,…,zn,再将 E ( z ) / z E(z)/z E(z)/z展成:
E ( z ) z = ∑ i = 1 n A i z − z i ,其中: A i 为 E ( z ) / z 在极点 z i 处的留数 \frac{E(z)}{z}=\sum_{i=1}^n\frac{A_i}{z-z_i},其中:A_i为E(z)/z在极点z_i处的留数 zE(z)=i=1∑nz−ziAi,其中:Ai为E(z)/z在极点zi处的留数
由上式写出 E ( z ) E(z) E(z)的部分分式展开式:
E ( z ) = A i z z − z i E(z)=\frac{A_iz}{z-z_i} E(z)=z−ziAiz
然后逐项查表,得到:
e i ( n T ) = Z − 1 [ A i z z − z i ] , i = 1 , 2 , 3 , … , n e_i(nT)=Z^{-1}\left[\frac{A_iz}{z-z_i}\right],i=1,2,3,\dots,n ei(nT)=Z−1[z−ziAiz],i=1,2,3,…,n
最后写出 E ( z ) E(z) E(z)对应的采样函数:
e ∗ ( t ) = ∑ n = 0 ∞ ∑ i = 1 n e i ( n T ) δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}\sum_{i=1}^ne_i(nT)\delta(t-nT) e∗(t)=n=0∑∞i=1∑nei(nT)δ(t−nT) -
幂级数法(综合除法)
z z z变换函数 E ( z ) E(z) E(z)可以表示为:
E ( z ) = b 0 + b 1 z − 1 + b 2 z − 2 + ⋯ + b m z − m 1 + a 1 z − 1 + a 2 z − 2 + ⋯ + a n z − n , m ≤ n E(z)=\frac{b_0+b_1z^{-1}+b_2z^{-2}+\dots+b_mz^{-m}}{1+a_1z^{-1}+a_2z^{-2}+\dots+a_nz^{-n}},m≤n E(z)=1+a1z−1+a2z−2+⋯+anz−nb0+b1z−1+b2z−2+⋯+bmz−m,m≤n
其中: a i ( i = 1 , 2 , … , n ) a_i(i=1,2,\dots,n) ai(i=1,2,…,n)和 b j ( j = 0 , 1 , 2 , … , m ) b_j(j=0,1,2,\dots,m) bj(j=0,1,2,…,m)均为常系数;对上式做综合除法,得到 z − 1 z^{-1} z−1升幂排列的幂级数展开式:
E ( z ) = c 0 + c 1 z − 1 + c 2 z − 2 + ⋯ + c n z − n + ⋯ = ∑ n = 0 ∞ c n z − n E(z)=c_0+c_1z^{-1}+c_2z^{-2}+\dots+c_nz^{-n}+\dots=\sum_{n=0}^{\infty}c_nz^{-n} E(z)=c0+c1z−1+c2z−2+⋯+cnz−n+⋯=n=0∑∞cnz−n
如果得到的无穷幂级数是收敛的,则由 z z z变化定义可知,幂级数展开式中的系数 c n ( n = 0 , 1 , 2 , … , n ) c_n(n=0,1,2,\dots,n) cn(n=0,1,2,…,n)就是采样脉冲序列 e ∗ ( t ) e^*(t) e∗(t)的脉冲强度 e ( n T ) e(nT) e(nT),则 E ( z ) E(z) E(z)对应的采样函数为:
e ∗ ( t ) = ∑ n = 0 ∞ c n δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}c_n\delta(t-nT) e∗(t)=n=0∑∞cnδ(t−nT) -
反演积分法(留数法)
E ( z ) E(z) E(z)的幂级数展开式为:
E ( z ) = ∑ n = 0 ∞ e ( n T ) z − n = e ( 0 ) + e ( T ) z − 1 + e ( 2 T ) z − 2 + ⋯ + E(z)=\sum_{n=0}^{\infty}e(nT)z^{-n}=e(0)+e(T)z^{-1}+e(2T)z^{-2}+\dots+ E(z)=n=0∑∞e(nT)z−n=e(0)+e(T)z−1+e(2T)z−2+⋯+
用 z n − 1 z^{n-1} zn−1乘以幂级数展开式两端:
E ( z ) z n − 1 = e ( 0 ) z n − 1 + e ( T ) z n − 2 + ⋯ + e ( n T ) z − 1 + … E(z)z^{n-1}=e(0)z^{n-1}+e(T)z^{n-2}+\dots+e(nT)z^{-1}+\dots E(z)zn−1=e(0)zn−1+e(T)zn−2+⋯+e(nT)z−1+…
根据柯西留数定理,设函数 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn−1除有限极点 z 1 , z 2 , … , z k z_1,z_2,\dots,z_k z1,z2,…,zk外,在域 G G G上是解析的;如果有闭合路径 Γ \Gamma Γ包含了这些极点,则有:
e ( n T ) = 1 2 π j ∮ Γ E ( z ) z n − 1 d z = ∑ i = 1 k R e s [ E ( z ) z n − 1 ] z → z i e(nT)=\frac{1}{2\pi{{\rm j}}}\oint_{\Gamma}E(z)z^{n-1}{\rm d}z=\sum_{i=1}^k{\rm Res}[E(z)z^{n-1}]_{z\rightarrow{z_i}} e(nT)=2πj1∮ΓE(z)zn−1dz=i=1∑kRes[E(z)zn−1]z→zi
其中: R e s [ E ( z ) z n − 1 ] z → z i {\rm Res}[E(z)z^{n-1}]_{z\rightarrow{z_i}} Res[E(z)zn−1]z→zi表示函数 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn−1在极点 z i z_i zi处的留数;因此, E ( z ) E(z) E(z)对应的采样函数为:
e ∗ ( t ) = ∑ n = 0 ∞ e ( n T ) δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}e(nT)\delta(t-nT) e∗(t)=n=0∑∞e(nT)δ(t−nT)
关于函数 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn−1在极点处留数计算方法:若 z i ( i = 1 , 2 , … , k ) z_i(i=1,2,\dots,k) zi(i=1,2,…,k)为单极点,则:
R e s [ E ( z ) z n − 1 ] z → z i = lim z → z i [ ( z − z i ) E ( z ) z n − 1 ] {\rm Res}\left[E(z)z^{n-1}\right]_{z\rightarrow{z_i}}=\lim_{z\rightarrow{z_i}}\left[(z-z_i)E(z)z^{n-1}\right] Res[E(z)zn−1]z→zi=z→zilim[(z−zi)E(z)zn−1]
若 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn−1有 n n n阶重极点 z i z_i zi,则:
R e s [ E ( z ) z n − 1 ] z → z i = 1 ( n − 1 ) ! lim z → z i d n − 1 [ ( z − z i ) n E ( z ) z n − 1 ] d z n − 1 {\rm Res}\left[E(z)z^{n-1}\right]_{z\rightarrow{z_i}}=\frac{1}{(n-1)!}\lim_{z\rightarrow{z_i}}\frac{{\rm d}^{n-1}\left[(z-z_i)^nE(z)z^{n-1}\right]}{{\rm d}z^{n-1}} Res[E(z)zn−1]z→zi=(n−1)!1z→zilimdzn−1dn−1[(z−zi)nE(z)zn−1]
3.6 实例分析
E
x
a
m
p
l
e
4
:
{\rm Example4:}
Example4: 设
z
z
z变换函数为
E
(
z
)
=
1
−
e
−
a
T
(
z
−
1
)
(
z
−
e
−
a
T
)
E(z)=\frac{1-{\rm e}^{-aT}}{(z-1)(z-{\rm e}^{-aT})}
E(z)=(z−1)(z−e−aT)1−e−aT
求
z
z
z反变换。
解:
因为
E
(
z
)
z
=
1
−
e
−
a
T
(
z
−
1
)
(
z
−
e
−
a
T
)
=
1
z
−
1
−
1
z
−
e
−
a
T
\frac{E(z)}{z}=\frac{1-{\rm e}^{-aT}}{(z-1)(z-{\rm e}^{-aT})}=\frac{1}{z-1}-\frac{1}{z-{\rm e}^{-aT}}
zE(z)=(z−1)(z−e−aT)1−e−aT=z−11−z−e−aT1
有:
E
(
z
)
=
z
z
−
1
−
z
z
−
e
−
a
T
E(z)=\frac{z}{z-1}-\frac{z}{z-{\rm e}^{-aT}}
E(z)=z−1z−z−e−aTz
可得:
e
(
n
T
)
=
1
−
e
−
a
n
T
e(nT)=1-{\rm e}^{-anT}
e(nT)=1−e−anT
可得:
e
∗
(
t
)
=
∑
n
=
0
∞
(
1
−
e
−
a
n
T
)
δ
(
t
−
n
T
)
e^*(t)=\sum_{n=0}^{\infty}(1-{\rm e}^{-anT})\delta(t-nT)
e∗(t)=n=0∑∞(1−e−anT)δ(t−nT)
有:
e
(
0
)
=
1
,
e
(
T
)
=
1
−
e
−
a
T
,
e
(
2
T
)
=
1
−
e
−
2
a
T
,
…
,
e(0)=1,e(T)=1-{\rm e}^{-aT},e(2T)=1-{\rm e}^{-2aT},\dots,
e(0)=1,e(T)=1−e−aT,e(2T)=1−e−2aT,…,
E
x
a
m
p
l
e
5
:
{\rm Example5:}
Example5: 设
z
z
z变换函数
E
(
z
)
=
z
3
+
2
z
2
+
1
z
3
−
1.5
z
2
+
0.5
z
E(z)=\frac{z^3+2z^2+1}{z^3-1.5z^2+0.5z}
E(z)=z3−1.5z2+0.5zz3+2z2+1
用幂级数法求
E
(
z
)
E(z)
E(z)的
z
z
z反变换。
解:
E
(
z
)
E(z)
E(z)表示为:
E
(
z
)
=
1
+
2
z
−
1
+
z
−
3
1
−
1.5
z
−
1
+
0.5
z
−
2
E(z)=\frac{1+2z^{-1}+z^{-3}}{1-1.5z^{-1}+0.5z^{-2}}
E(z)=1−1.5z−1+0.5z−21+2z−1+z−3
综合除法可得:
E
(
z
)
=
1
+
3.5
z
−
1
+
4.75
z
−
2
+
6.375
z
−
3
+
⋯
+
E(z)=1+3.5z^{-1}+4.75z^{-2}+6.375z^{-3}+\dots+
E(z)=1+3.5z−1+4.75z−2+6.375z−3+⋯+
采样函数为:
e
∗
(
t
)
=
δ
(
t
)
+
3.5
δ
(
t
−
T
)
+
4.75
δ
(
t
−
2
T
)
+
6.375
δ
(
t
−
3
T
)
+
⋯
+
e^*(t)=\delta(t)+3.5\delta(t-T)+4.75\delta(t-2T)+6.375\delta(t-3T)+\dots+
e∗(t)=δ(t)+3.5δ(t−T)+4.75δ(t−2T)+6.375δ(t−3T)+⋯+
E
x
a
m
p
l
e
6
:
{\rm Example6:}
Example6: 设
z
z
z变换函数
E
(
z
)
=
z
2
(
z
−
1
)
(
z
−
0.5
)
E(z)=\frac{z^2}{(z-1)(z-0.5)}
E(z)=(z−1)(z−0.5)z2
用留数法求
z
z
z反变换。
解:
因为函数
E
(
z
)
z
n
−
1
=
z
n
+
1
(
z
−
1
)
(
z
−
0.5
)
E(z)z^{n-1}=\frac{z^{n+1}}{(z-1)(z-0.5)}
E(z)zn−1=(z−1)(z−0.5)zn+1
有
z
1
=
1
,
z
2
=
0.5
z_1=1,z_2=0.5
z1=1,z2=0.5两个极点,极点处留数为:
R
e
s
[
z
n
+
1
(
z
−
1
)
(
z
−
0.5
)
]
z
→
1
=
lim
z
→
1
[
(
z
−
1
)
z
n
+
1
(
z
−
1
)
(
z
−
0.5
)
]
=
2
R
e
s
[
z
n
+
1
(
z
−
1
)
(
z
−
0.5
)
]
z
→
0.5
=
lim
z
→
0.5
[
(
z
−
0.5
)
z
n
+
1
(
z
−
1
)
(
z
−
0.5
)
]
=
−
(
0.5
)
n
\begin{aligned} &{\rm Res}\left[\frac{z^{n+1}}{(z-1)(z-0.5)}\right]_{z\rightarrow1}=\lim_{z\rightarrow1}\left[\frac{(z-1)z^{n+1}}{(z-1)(z-0.5)}\right]=2\\\\ &{\rm Res}\left[\frac{z^{n+1}}{(z-1)(z-0.5)}\right]_{z\rightarrow0.5}=\lim_{z\rightarrow0.5}\left[\frac{(z-0.5)z^{n+1}}{(z-1)(z-0.5)}\right]=-(0.5)^n \end{aligned}
Res[(z−1)(z−0.5)zn+1]z→1=z→1lim[(z−1)(z−0.5)(z−1)zn+1]=2Res[(z−1)(z−0.5)zn+1]z→0.5=z→0.5lim[(z−1)(z−0.5)(z−0.5)zn+1]=−(0.5)n
可得:
e
(
n
T
)
=
2
−
(
0.5
)
n
e(nT)=2-(0.5)^n
e(nT)=2−(0.5)n
相应的采样函数为:
e
∗
(
t
)
=
∑
n
=
0
∞
e
(
n
T
)
δ
(
t
−
n
T
)
=
∑
n
=
0
∞
[
2
−
(
0.5
)
n
]
δ
(
t
−
n
T
)
=
δ
(
t
)
+
1.5
δ
(
t
−
T
)
+
1.75
δ
(
t
−
2
T
)
+
1.875
δ
(
t
−
3
T
)
+
…
\begin{aligned} e^*(t)&=\sum_{n=0}^{\infty}e(nT)\delta(t-nT)=\sum_{n=0}^{\infty}\left[2-(0.5)^n\right]\delta(t-nT)\\\\ &=\delta(t)+1.5\delta(t-T)+1.75\delta(t-2T)+1.875\delta(t-3T)+\dots \end{aligned}
e∗(t)=n=0∑∞e(nT)δ(t−nT)=n=0∑∞[2−(0.5)n]δ(t−nT)=δ(t)+1.5δ(t−T)+1.75δ(t−2T)+1.875δ(t−3T)+…