自动控制原理7.3:z变换理论

参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》



3. z z z变换理论
3.1 z z z变换定义

设连续函数 e ( t ) e(t) e(t)是可拉氏变换的,则拉氏变换定义为:
E ( s ) = ∫ 0 ∞ e ( t ) e − s t d t E(s)=\int_0^{\infty}e(t){\rm e}^{-st}{\rm d}t E(s)=0e(t)estdt
采样信号表达式为:
e ∗ ( t ) = ∑ n = 0 ∞ e ( n T ) δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}e(nT)\delta(t-nT) e(t)=n=0e(nT)δ(tnT)
采样信号 e ∗ ( t ) e^*(t) e(t)的拉氏变换为:
E ∗ ( s ) = ∑ n = 0 ∞ e ( n T ) e − n s T E^*(s)=\sum_{n=0}^{\infty}e(nT){\rm e}^{-nsT} E(s)=n=0e(nT)ensT
z = e s T z={\rm e}^{sT} z=esT T T T为采样周期, z z z是在复数平面上定义的一个复变量,称为 z z z变换算子;

采样信号 e ∗ ( t ) e^*(t) e(t) z z z变换定义为:
E ( z ) = E ∗ ( s ) ∣ s = 1 T ln ⁡ z = ∑ n = 0 ∞ e ( n T ) z − n E(z)=E^*(s)|_{s=\frac{1}{T}\ln{z}}=\sum_{n=0}^{\infty}e(nT)z^{-n} E(z)=E(s)s=T1lnz=n=0e(nT)zn

3.2 z z z变换方法
  1. 级数求和法

    级数求和法直接根据 z z z变换的定义,将上式写成展开形式:
    E ( z ) = e ( 0 ) + e ( T ) z − 1 + e ( 2 T ) z − 2 + ⋯ + e ( n T ) z − n + ⋯ + E(z)=e(0)+e(T)z^{-1}+e(2T)z^{-2}+\dots+e(nT)z^{-n}+\dots+ E(z)=e(0)+e(T)z1+e(2T)z2++e(nT)zn++
    实例分析:

    E x a m p l e 1 : {\rm Example1:} Example1 求单位阶跃函数 1 ( t ) 1(t) 1(t) z z z变换。

    解:

    依题意可得, e ( n T ) = 1 ( n = 0 , 1 , 2 , … , ∞ ) e(nT)=1(n=0,1,2,\dots,\infty) e(nT)=1(n=0,1,2,,),可得:
    E ( z ) = 1 + z − 1 + z − 2 + ⋯ + z − n + ⋯ + E(z)=1+z^{-1}+z^{-2}+\dots+z^{-n}+\dots+ E(z)=1+z1+z2++zn++
    在上式中,若 ∣ z − 1 ∣ < 1 |z^{-1}|<1 z1<1,则无穷级数是收敛的,利用等比级数求和公式,可得 1 ( t ) 1(t) 1(t) z z z变换的闭合形式:
    E ( z ) = 1 1 − z − 1 = z z − 1 E(z)=\frac{1}{1-z^{-1}}=\frac{z}{z-1} E(z)=1z11=z1z
    实例分析:

    E x a m p l e 2 : {\rm Example2:} Example2 e ( t ) = δ T ( t ) = ∑ n = 0 ∞ δ ( t − n T ) e(t)=\delta_T(t)=\sum_{n=0}^{\infty}\delta(t-nT) e(t)=δT(t)=n=0δ(tnT),求理想脉冲序列 δ T ( t ) \delta_T(t) δT(t) z z z变换。

    解:

    依题意可得:
    e ∗ ( t ) = δ T ( t ) = ∑ n = 0 ∞ δ ( t − n T ) e^*(t)=\delta_T(t)=\sum_{n=0}^{\infty}\delta(t-nT) e(t)=δT(t)=n=0δ(tnT)
    由拉氏变换可知:
    E ∗ ( s ) = ∑ n = 0 ∞ e − n s T E^*(s)=\sum_{n=0}^{\infty}e^{-nsT} E(s)=n=0ensT
    因此:
    E ( z ) = ∑ n = 0 ∞ z − n = 1 + z − 1 + z − 2 + ⋯ + E(z)=\sum_{n=0}^{\infty}z^{-n}=1+z^{-1}+z^{-2}+\dots+ E(z)=n=0zn=1+z1+z2++
    将上式写出闭合形式,可得 δ T ( t ) \delta_T(t) δT(t) z z z变换为:
    E ( z ) = 1 1 − z − 1 = z z − 1 , ∣ z − 1 ∣ < 1 E(z)=\frac{1}{1-z^{-1}}=\frac{z}{z-1},\left|z^{-1}\right|<1 E(z)=1z11=z1z z1 <1
    由实例可知,相同的 z z z变换 E ( z ) E(z) E(z)对应于相同的采样函数 e ∗ ( t ) e^*(t) e(t),但不一定对应于相同的连续函数 e ( t ) e(t) e(t)

  2. 部分分式法

    先求出已知连续时间函数 e ( t ) e(t) e(t)的拉氏变换 E ( s ) E(s) E(s),再将有理分式函数 E ( s ) E(s) E(s)展成部分分式之和的形式,使每一部分分式对应简单的时间函数,然后可得各部分对应的 z z z变换,即可求出 E ( s ) E(s) E(s)对应的 z z z变换 E ( z ) E(z) E(z)

    实例分析:

    E x a m p l e 3 : {\rm Example3:} Example3 e ( t ) = sin ⁡ ω t e(t)=\sin\omega{t} e(t)=sinωt,求 E ( z ) E(z) E(z)

    解:

    e ( t ) = sin ⁡ ω t e(t)=\sin\omega{t} e(t)=sinωt取拉氏变换,可得:
    E ( s ) = ω s 2 + ω 2 E(s)=\frac{\omega}{s^2+\omega^2} E(s)=s2+ω2ω
    将上式展开为部分分式:
    E ( s ) = 1 2 j ( 1 s − j ω − 1 s + j ω ) E(s)=\frac{1}{2{\rm j}}\left(\frac{1}{s-{\rm j}\omega}-\frac{1}{s+{\rm j}\omega}\right) E(s)=2j1(sjω1s+jω1)
    可得:
    E ( z ) = 1 2 j ( z z − e j ω T − z z − e − j ω T ) = 1 2 j [ z ( e j ω T − e − j ω T ) z 2 − z ( e j ω T + e − j ω T ) + 1 ] E(z)=\frac{1}{2{\rm j}}\left(\frac{z}{z-{\rm e}^{{\rm j}\omega{T}}}-\frac{z}{z-{\rm e}^{-{\rm j}\omega{T}}}\right)=\frac{1}{2{\rm j}}\left[\frac{z({\rm e}^{{\rm j}\omega{T}}-{\rm e}^{-{\rm j}\omega{T}})}{z^2-z({\rm e}^{{\rm j}\omega{T}}+e^{-{\rm j}\omega{T}})+1}\right] E(z)=2j1(zejωTzzejωTz)=2j1[z2z(ejωT+ejωT)+1z(ejωTejωT)]
    化简:
    E ( z ) = z sin ⁡ ω T z 2 − 2 z cos ⁡ ω T + 1 E(z)=\frac{z\sin\omega{T}}{z^2-2z\cos\omega{T}+1} E(z)=z22zcosωT+1zsinωT

3.3 z z z变换表
序号 序号 序号 时间函数 e ( t ) 时间函数e(t) 时间函数e(t) 拉普拉斯变换 E ( s ) 拉普拉斯变换E(s) 拉普拉斯变换E(s) z 变换 E ( z ) z变换E(z) z变换E(z)
1 1 1 δ ( t − n T ) \delta(t-nT) δ(tnT) e − s n T {\rm e}^{-snT} esnT z − n z^{-n} zn
2 2 2 δ ( t ) \delta(t) δ(t) 1 1 1 1 1 1
3 3 3 1 ( t ) 1(t) 1(t) 1 s \displaystyle\frac{1}{s} s1 z z − 1 \displaystyle\frac{z}{z-1} z1z
4 4 4 t t t 1 s 2 \displaystyle\frac{1}{s^2} s21 T z ( z − 1 ) 2 \displaystyle\frac{Tz}{(z-1)^2} (z1)2Tz
5 5 5 t 2 2 ! \displaystyle\frac{t^2}{2!} 2!t2 1 s 3 \displaystyle\frac{1}{s^3} s31 T 2 z ( z + 1 ) 2 ( z − 1 ) 3 \displaystyle\frac{T^2z(z+1)}{2(z-1)^3} 2(z1)3T2z(z+1)
6 6 6 a t / T a^{t/T} at/T 1 s − ( 1 / T ) ln ⁡ a \displaystyle\frac{1}{s-(1/T)\ln{a}} s(1/T)lna1 z z − a \displaystyle\frac{z}{z-a} zaz
7 7 7 e − a t {\rm e}^{-at} eat 1 s + a \displaystyle\frac{1}{s+a} s+a1 z z − e − a T \displaystyle\frac{z}{z-{\rm e}^{-aT}} zeaTz
8 8 8 t e − a t t{\rm e}^{-at} teat 1 ( s + a ) 2 \displaystyle\frac{1}{(s+a)^2} (s+a)21 T z e − a T ( z − e − a T ) 2 \displaystyle\frac{Tz{\rm e}^{-aT}}{(z-{\rm e}^{-aT})^2} (zeaT)2TzeaT
9 9 9 1 2 t 2 e − a t \displaystyle\frac{1}{2}t^2{\rm e}^{-at} 21t2eat 1 ( s + a ) 3 \displaystyle\frac{1}{(s+a)^3} (s+a)31 T 2 z e − a T 2 ( z − e − a T ) 2 + T 2 z e − 2 a T ( z − e − a T ) 3 \displaystyle\frac{T^2z{\rm e}^{-aT}}{2(z-{\rm e}^{-aT})^2}+\frac{T^2z{\rm e}^{-2aT}}{(z-{\rm e}^{-aT})^3} 2(zeaT)2T2zeaT+(zeaT)3T2ze2aT
10 10 10 1 − e − a t 1-{\rm e}^{-at} 1eat a s ( s + a ) \displaystyle\frac{a}{s(s+a)} s(s+a)a ( 1 − e − a T ) z ( z − 1 ) ( z − e − a T ) \displaystyle\frac{(1-e^{-aT})z}{(z-1)(z-e^{-aT})} (z1)(zeaT)(1eaT)z
11 11 11 sin ⁡ ω t \sin\omega{t} sinωt ω s 2 + ω 2 \displaystyle\frac{\omega}{s^2+\omega^2} s2+ω2ω z sin ⁡ ω T z 2 − 2 z cos ⁡ ω T + 1 \displaystyle\frac{z\sin\omega{T}}{z^2-2z\cos\omega{T}+1} z22zcosωT+1zsinωT
12 12 12 cos ⁡ ω t \cos\omega{t} cosωt s s 2 + ω 2 \displaystyle\frac{s}{s^2+\omega^2} s2+ω2s z ( z − cos ⁡ ω T ) z 2 − 2 z cos ⁡ ω T + 1 \displaystyle\frac{z(z-\cos\omega{T})}{z^2-2z\cos\omega{T}+1} z22zcosωT+1z(zcosωT)
13 13 13 1 − cos ⁡ ω t 1-\cos\omega{t} 1cosωt ω 2 s ( s 2 + ω 2 ) \displaystyle\frac{\omega^2}{s(s^2+\omega^2)} s(s2+ω2)ω2 z z − 1 − z ( z − cos ⁡ ω T ) z 2 − 2 z cos ⁡ ω T + 1 \displaystyle\frac{z}{z-1}-\frac{z(z-\cos\omega{T})}{z^2-2z\cos\omega{T}+1} z1zz22zcosωT+1z(zcosωT)
14 14 14 e − a t sin ⁡ ω t {\rm e}^{-at}\sin\omega{t} eatsinωt ω ( s + a ) 2 + ω 2 \displaystyle\frac{\omega}{(s+a)^2+\omega^2} (s+a)2+ω2ω z e − a t sin ⁡ ω T z 2 − 2 z e − a t cos ⁡ ω T + e − 2 a T \displaystyle\frac{z{\rm e}^{-at}\sin\omega{T}}{z^2-2z{\rm e}^{-at}\cos\omega{T}+{\rm e}^{-2aT}} z22zeatcosωT+e2aTzeatsinωT
15 15 15 e − a t cos ⁡ ω t {\rm e}^{-at}\cos\omega{t} eatcosωt s + a ( s + a ) 2 + ω 2 \displaystyle\frac{s+a}{(s+a)^2+\omega^2} (s+a)2+ω2s+a z 2 − z e − a T cos ⁡ ω T z 2 − 2 z e − a T cos ⁡ ω T + e − 2 a T \displaystyle\frac{z^2-z{\rm e}^{-aT}\cos\omega{T}}{z^2-2z{\rm e}^{-aT}\cos\omega{T}+{\rm e}^{-2aT}} z22zeaTcosωT+e2aTz2zeaTcosωT
3.4 z z z变换性质
  1. 线性定理

    E 1 ( z ) = Z [ e 1 ( t ) ] , E 2 ( z ) = Z [ e 2 ( t ) ] , a E_1(z)=Z[e_1(t)],E_2(z)=Z[e_2(t)],a E1(z)=Z[e1(t)]E2(z)=Z[e2(t)]a为常数,则:
    Z [ e 1 ( t ) ± e 2 ( t ) ] = E 1 ( z ) ± E 2 ( z ) ; Z [ a e ( t ) ] = a E ( z ) ,式中 : E ( z ) = Z [ e ( t ) ] Z[e_1(t)±e_2(t)]=E_1(z)±E_2(z);Z[ae(t)]=aE(z),式中:E(z)=Z[e(t)] Z[e1(t)±e2(t)]=E1(z)±E2(z)Z[ae(t)]=aE(z),式中:E(z)=Z[e(t)]

  2. 实数位移定理(平移定理)

    实数位移含义:整个采样序列在时间轴上左右平移若干个采样周期,其中向左平移为超前,向右平移为滞后;如果函数 e ( t ) e(t) e(t)是可拉普拉斯变换的,其 z z z变换为 E ( z ) E(z) E(z),则有:
    Z [ e ( t − k T ) ] = z − k E ( z ) ; Z [ e ( t + k T ) ] = z k [ E ( z ) − ∑ n = 1 k − 1 e ( n T ) z − n ] Z[e(t-kT)]=z^{-k}E(z);Z[e(t+kT)]=z^k[E(z)-\sum_{n=1}^{k-1}e(nT)z^{-n}] Z[e(tkT)]=zkE(z)Z[e(t+kT)]=zk[E(z)n=1k1e(nT)zn]

  3. 复数位移定理

    如果函数 e ( t ) e(t) e(t)是可拉普拉斯变换的,其 z z z变换为 E ( z ) E(z) E(z),则有:
    Z [ e ∓ a t e ( t ) ] = E ( z e ± a T ) Z[{\rm e}^{\mp{at}}e(t)]=E(z{\rm e}^{\pm{aT}}) Z[eate(t)]=E(ze±aT)

  4. 终值定理

    如果函数 e ( t ) e(t) e(t) z z z变换为 E ( z ) E(z) E(z),函数序列 e ( n T ) e(nT) e(nT)为有限值 ( n = 0 , 1 , 2 , …   ) (n=0,1,2,\dots) (n=0,1,2,),且极限 lim ⁡ n → ∞ e ( n T ) \displaystyle\lim_{n\rightarrow\infty}e(nT) nlime(nT)存在,则函数序列的终值:
    lim ⁡ n → ∞ e ( n T ) = lim ⁡ z → 1 ( z − 1 ) E ( z ) \lim_{n\rightarrow\infty}e(nT)=\lim_{z\rightarrow1}(z-1)E(z) nlime(nT)=z1lim(z1)E(z)

  5. 卷积定理

    x ( n T ) x(nT) x(nT) y ( n T ) y(nT) y(nT)为两个采样函数,其离散卷积积分定义为:
    x ( n T ) ∗ y ( n T ) = ∑ k = 0 ∞ x ( k T ) y [ ( n − k ) T ] x(nT)*y(nT)=\sum_{k=0}^{\infty}x(kT)y[(n-k)T] x(nT)y(nT)=k=0x(kT)y[(nk)T]
    则卷积定理如下:若
    g ( n T ) = x ( n T ) ∗ y ( n T ) g(nT)=x(nT)*y(nT) g(nT)=x(nT)y(nT)
    则有:
    G ( z ) = X ( z ) ⋅ Y ( z ) G(z)=X(z)·Y(z) G(z)=X(z)Y(z)
    其中:
    X ( z ) = ∑ k = 0 ∞ x ( k T ) z − k , Y ( z ) = ∑ n = 0 ∞ y ( n T ) z − n , G ( z ) = Z [ g ( n T ) ] = Z [ x ( n T ) ∗ y ( n T ) ] X(z)=\sum_{k=0}^{\infty}x(kT)z^{-k},Y(z)=\sum_{n=0}^{\infty}y(nT)z^{-n},G(z)=Z[g(nT)]=Z[x(nT)*y(nT)] X(z)=k=0x(kT)zkY(z)=n=0y(nT)znG(z)=Z[g(nT)]=Z[x(nT)y(nT)]

3.5 z z z反变换

z z z反变换:已知 z z z变换表达式 E ( z ) E(z) E(z)求相应离散序列 e ( n T ) e(nT) e(nT)的过程,记为:
e ( n T ) = Z − 1 [ E ( z ) ] e(nT)=Z^{-1}[E(z)] e(nT)=Z1[E(z)]

  1. 部分分式法(查表法)

    设已知的 z z z变换函数 E ( z ) E(z) E(z)无重极点,求出 E ( z ) E(z) E(z)的极点为 z 1 , z 2 , … , z n z_1,z_2,\dots,z_n z1,z2,,zn,再将 E ( z ) / z E(z)/z E(z)/z展成:
    E ( z ) z = ∑ i = 1 n A i z − z i ,其中: A i 为 E ( z ) / z 在极点 z i 处的留数 \frac{E(z)}{z}=\sum_{i=1}^n\frac{A_i}{z-z_i},其中:A_i为E(z)/z在极点z_i处的留数 zE(z)=i=1nzziAi,其中:AiE(z)/z在极点zi处的留数
    由上式写出 E ( z ) E(z) E(z)的部分分式展开式:
    E ( z ) = A i z z − z i E(z)=\frac{A_iz}{z-z_i} E(z)=zziAiz
    然后逐项查表,得到:
    e i ( n T ) = Z − 1 [ A i z z − z i ] , i = 1 , 2 , 3 , … , n e_i(nT)=Z^{-1}\left[\frac{A_iz}{z-z_i}\right],i=1,2,3,\dots,n ei(nT)=Z1[zziAiz]i=1,2,3,,n
    最后写出 E ( z ) E(z) E(z)对应的采样函数:
    e ∗ ( t ) = ∑ n = 0 ∞ ∑ i = 1 n e i ( n T ) δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}\sum_{i=1}^ne_i(nT)\delta(t-nT) e(t)=n=0i=1nei(nT)δ(tnT)

  2. 幂级数法(综合除法)

    z z z变换函数 E ( z ) E(z) E(z)可以表示为:
    E ( z ) = b 0 + b 1 z − 1 + b 2 z − 2 + ⋯ + b m z − m 1 + a 1 z − 1 + a 2 z − 2 + ⋯ + a n z − n , m ≤ n E(z)=\frac{b_0+b_1z^{-1}+b_2z^{-2}+\dots+b_mz^{-m}}{1+a_1z^{-1}+a_2z^{-2}+\dots+a_nz^{-n}},m≤n E(z)=1+a1z1+a2z2++anznb0+b1z1+b2z2++bmzm,mn
    其中: a i ( i = 1 , 2 , … , n ) a_i(i=1,2,\dots,n) ai(i=1,2,,n) b j ( j = 0 , 1 , 2 , … , m ) b_j(j=0,1,2,\dots,m) bj(j=0,1,2,,m)均为常系数;

    对上式做综合除法,得到 z − 1 z^{-1} z1升幂排列的幂级数展开式:
    E ( z ) = c 0 + c 1 z − 1 + c 2 z − 2 + ⋯ + c n z − n + ⋯ = ∑ n = 0 ∞ c n z − n E(z)=c_0+c_1z^{-1}+c_2z^{-2}+\dots+c_nz^{-n}+\dots=\sum_{n=0}^{\infty}c_nz^{-n} E(z)=c0+c1z1+c2z2++cnzn+=n=0cnzn
    如果得到的无穷幂级数是收敛的,则由 z z z变化定义可知,幂级数展开式中的系数 c n ( n = 0 , 1 , 2 , … , n ) c_n(n=0,1,2,\dots,n) cn(n=0,1,2,,n)就是采样脉冲序列 e ∗ ( t ) e^*(t) e(t)的脉冲强度 e ( n T ) e(nT) e(nT),则 E ( z ) E(z) E(z)对应的采样函数为:
    e ∗ ( t ) = ∑ n = 0 ∞ c n δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}c_n\delta(t-nT) e(t)=n=0cnδ(tnT)

  3. 反演积分法(留数法)

    E ( z ) E(z) E(z)的幂级数展开式为:
    E ( z ) = ∑ n = 0 ∞ e ( n T ) z − n = e ( 0 ) + e ( T ) z − 1 + e ( 2 T ) z − 2 + ⋯ + E(z)=\sum_{n=0}^{\infty}e(nT)z^{-n}=e(0)+e(T)z^{-1}+e(2T)z^{-2}+\dots+ E(z)=n=0e(nT)zn=e(0)+e(T)z1+e(2T)z2++
    z n − 1 z^{n-1} zn1乘以幂级数展开式两端:
    E ( z ) z n − 1 = e ( 0 ) z n − 1 + e ( T ) z n − 2 + ⋯ + e ( n T ) z − 1 + … E(z)z^{n-1}=e(0)z^{n-1}+e(T)z^{n-2}+\dots+e(nT)z^{-1}+\dots E(z)zn1=e(0)zn1+e(T)zn2++e(nT)z1+
    根据柯西留数定理,设函数 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn1除有限极点 z 1 , z 2 , … , z k z_1,z_2,\dots,z_k z1,z2,,zk外,在域 G G G上是解析的;如果有闭合路径 Γ \Gamma Γ包含了这些极点,则有:
    e ( n T ) = 1 2 π j ∮ Γ E ( z ) z n − 1 d z = ∑ i = 1 k R e s [ E ( z ) z n − 1 ] z → z i e(nT)=\frac{1}{2\pi{{\rm j}}}\oint_{\Gamma}E(z)z^{n-1}{\rm d}z=\sum_{i=1}^k{\rm Res}[E(z)z^{n-1}]_{z\rightarrow{z_i}} e(nT)=2πj1ΓE(z)zn1dz=i=1kRes[E(z)zn1]zzi
    其中: R e s [ E ( z ) z n − 1 ] z → z i {\rm Res}[E(z)z^{n-1}]_{z\rightarrow{z_i}} Res[E(z)zn1]zzi表示函数 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn1在极点 z i z_i zi处的留数;

    因此, E ( z ) E(z) E(z)对应的采样函数为:
    e ∗ ( t ) = ∑ n = 0 ∞ e ( n T ) δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}e(nT)\delta(t-nT) e(t)=n=0e(nT)δ(tnT)
    关于函数 E ( z ) z n − 1 E(z)z^{n-1} E(z)zn1在极点处留数计算方法:

    z i ( i = 1 , 2 , … , k ) z_i(i=1,2,\dots,k) zi(i=1,2,,k)为单极点,则:
    R e s [ E ( z ) z n − 1 ] z → z i = lim ⁡ z → z i [ ( z − z i ) E ( z ) z n − 1 ] {\rm Res}\left[E(z)z^{n-1}\right]_{z\rightarrow{z_i}}=\lim_{z\rightarrow{z_i}}\left[(z-z_i)E(z)z^{n-1}\right] Res[E(z)zn1]zzi=zzilim[(zzi)E(z)zn1]
    E ( z ) z n − 1 E(z)z^{n-1} E(z)zn1 n n n阶重极点 z i z_i zi,则:
    R e s [ E ( z ) z n − 1 ] z → z i = 1 ( n − 1 ) ! lim ⁡ z → z i d n − 1 [ ( z − z i ) n E ( z ) z n − 1 ] d z n − 1 {\rm Res}\left[E(z)z^{n-1}\right]_{z\rightarrow{z_i}}=\frac{1}{(n-1)!}\lim_{z\rightarrow{z_i}}\frac{{\rm d}^{n-1}\left[(z-z_i)^nE(z)z^{n-1}\right]}{{\rm d}z^{n-1}} Res[E(z)zn1]zzi=(n1)!1zzilimdzn1dn1[(zzi)nE(z)zn1]

3.6 实例分析

E x a m p l e 4 : {\rm Example4:} Example4 z z z变换函数为
E ( z ) = 1 − e − a T ( z − 1 ) ( z − e − a T ) E(z)=\frac{1-{\rm e}^{-aT}}{(z-1)(z-{\rm e}^{-aT})} E(z)=(z1)(zeaT)1eaT
z z z反变换。

解:

因为
E ( z ) z = 1 − e − a T ( z − 1 ) ( z − e − a T ) = 1 z − 1 − 1 z − e − a T \frac{E(z)}{z}=\frac{1-{\rm e}^{-aT}}{(z-1)(z-{\rm e}^{-aT})}=\frac{1}{z-1}-\frac{1}{z-{\rm e}^{-aT}} zE(z)=(z1)(zeaT)1eaT=z11zeaT1
有:
E ( z ) = z z − 1 − z z − e − a T E(z)=\frac{z}{z-1}-\frac{z}{z-{\rm e}^{-aT}} E(z)=z1zzeaTz
可得:
e ( n T ) = 1 − e − a n T e(nT)=1-{\rm e}^{-anT} e(nT)=1eanT
可得:
e ∗ ( t ) = ∑ n = 0 ∞ ( 1 − e − a n T ) δ ( t − n T ) e^*(t)=\sum_{n=0}^{\infty}(1-{\rm e}^{-anT})\delta(t-nT) e(t)=n=0(1eanT)δ(tnT)
有:
e ( 0 ) = 1 , e ( T ) = 1 − e − a T , e ( 2 T ) = 1 − e − 2 a T , … , e(0)=1,e(T)=1-{\rm e}^{-aT},e(2T)=1-{\rm e}^{-2aT},\dots, e(0)=1,e(T)=1eaT,e(2T)=1e2aT,,
E x a m p l e 5 : {\rm Example5:} Example5 z z z变换函数
E ( z ) = z 3 + 2 z 2 + 1 z 3 − 1.5 z 2 + 0.5 z E(z)=\frac{z^3+2z^2+1}{z^3-1.5z^2+0.5z} E(z)=z31.5z2+0.5zz3+2z2+1
用幂级数法求 E ( z ) E(z) E(z) z z z反变换。

解:

E ( z ) E(z) E(z)表示为:
E ( z ) = 1 + 2 z − 1 + z − 3 1 − 1.5 z − 1 + 0.5 z − 2 E(z)=\frac{1+2z^{-1}+z^{-3}}{1-1.5z^{-1}+0.5z^{-2}} E(z)=11.5z1+0.5z21+2z1+z3
综合除法可得:
E ( z ) = 1 + 3.5 z − 1 + 4.75 z − 2 + 6.375 z − 3 + ⋯ + E(z)=1+3.5z^{-1}+4.75z^{-2}+6.375z^{-3}+\dots+ E(z)=1+3.5z1+4.75z2+6.375z3++
采样函数为:
e ∗ ( t ) = δ ( t ) + 3.5 δ ( t − T ) + 4.75 δ ( t − 2 T ) + 6.375 δ ( t − 3 T ) + ⋯ + e^*(t)=\delta(t)+3.5\delta(t-T)+4.75\delta(t-2T)+6.375\delta(t-3T)+\dots+ e(t)=δ(t)+3.5δ(tT)+4.75δ(t2T)+6.375δ(t3T)++
E x a m p l e 6 : {\rm Example6:} Example6 z z z变换函数
E ( z ) = z 2 ( z − 1 ) ( z − 0.5 ) E(z)=\frac{z^2}{(z-1)(z-0.5)} E(z)=(z1)(z0.5)z2
用留数法求 z z z反变换。

解:

因为函数
E ( z ) z n − 1 = z n + 1 ( z − 1 ) ( z − 0.5 ) E(z)z^{n-1}=\frac{z^{n+1}}{(z-1)(z-0.5)} E(z)zn1=(z1)(z0.5)zn+1
z 1 = 1 , z 2 = 0.5 z_1=1,z_2=0.5 z1=1z2=0.5两个极点,极点处留数为:
R e s [ z n + 1 ( z − 1 ) ( z − 0.5 ) ] z → 1 = lim ⁡ z → 1 [ ( z − 1 ) z n + 1 ( z − 1 ) ( z − 0.5 ) ] = 2 R e s [ z n + 1 ( z − 1 ) ( z − 0.5 ) ] z → 0.5 = lim ⁡ z → 0.5 [ ( z − 0.5 ) z n + 1 ( z − 1 ) ( z − 0.5 ) ] = − ( 0.5 ) n \begin{aligned} &{\rm Res}\left[\frac{z^{n+1}}{(z-1)(z-0.5)}\right]_{z\rightarrow1}=\lim_{z\rightarrow1}\left[\frac{(z-1)z^{n+1}}{(z-1)(z-0.5)}\right]=2\\\\ &{\rm Res}\left[\frac{z^{n+1}}{(z-1)(z-0.5)}\right]_{z\rightarrow0.5}=\lim_{z\rightarrow0.5}\left[\frac{(z-0.5)z^{n+1}}{(z-1)(z-0.5)}\right]=-(0.5)^n \end{aligned} Res[(z1)(z0.5)zn+1]z1=z1lim[(z1)(z0.5)(z1)zn+1]=2Res[(z1)(z0.5)zn+1]z0.5=z0.5lim[(z1)(z0.5)(z0.5)zn+1]=(0.5)n

可得:
e ( n T ) = 2 − ( 0.5 ) n e(nT)=2-(0.5)^n e(nT)=2(0.5)n
相应的采样函数为:
e ∗ ( t ) = ∑ n = 0 ∞ e ( n T ) δ ( t − n T ) = ∑ n = 0 ∞ [ 2 − ( 0.5 ) n ] δ ( t − n T ) = δ ( t ) + 1.5 δ ( t − T ) + 1.75 δ ( t − 2 T ) + 1.875 δ ( t − 3 T ) + … \begin{aligned} e^*(t)&=\sum_{n=0}^{\infty}e(nT)\delta(t-nT)=\sum_{n=0}^{\infty}\left[2-(0.5)^n\right]\delta(t-nT)\\\\ &=\delta(t)+1.5\delta(t-T)+1.75\delta(t-2T)+1.875\delta(t-3T)+\dots \end{aligned} e(t)=n=0e(nT)δ(tnT)=n=0[2(0.5)n]δ(tnT)=δ(t)+1.5δ(tT)+1.75δ(t2T)+1.875δ(t3T)+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值