参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》
6.离散系统的动态性能分析
6.1 离散系统的时间响应
实例分析:
E x a m p l e 1 : {\rm Example1:} Example1: 设有零阶保持器的离散系统如下图所示,其中 r ( t ) = 1 ( t ) , T = 1 s , K = 1 r(t)=1(t),T=1s,K=1 r(t)=1(t),T=1s,K=1,分析该系统的动态性能。
解:
开环脉冲传递函数
G
(
z
)
G(z)
G(z),因为:
G
(
s
)
=
1
s
2
(
s
+
1
)
(
1
−
e
−
s
)
G(s)=\frac{1}{s^2(s+1)}(1-{\rm e}^{-s})
G(s)=s2(s+1)1(1−e−s)
对上式进行
z
z
z变换,可得:
G
(
z
)
=
(
1
−
z
−
1
)
Z
[
1
s
2
(
s
+
1
)
]
G(z)=(1-z^{-1})Z\left[\frac{1}{s^2(s+1)}\right]
G(z)=(1−z−1)Z[s2(s+1)1]
可得:
G
(
z
)
=
0.368
z
+
0.264
(
z
−
1
)
(
z
−
0.368
)
G(z)=\frac{0.368z+0.264}{(z-1)(z-0.368)}
G(z)=(z−1)(z−0.368)0.368z+0.264
闭环脉冲传递函数为:
Φ
(
z
)
=
G
(
z
)
1
+
G
(
z
)
=
0.368
z
+
0.264
z
2
−
z
+
0.632
\Phi(z)=\frac{G(z)}{1+G(z)}=\frac{0.368z+0.264}{z^2-z+0.632}
Φ(z)=1+G(z)G(z)=z2−z+0.6320.368z+0.264
输入的
z
z
z变换:
R
(
z
)
=
z
z
−
1
R(z)=\frac{z}{z-1}
R(z)=z−1z
单位阶跃序列响应的
z
z
z变换为:
C
(
z
)
=
Φ
(
z
)
R
(
z
)
=
0.368
z
−
1
+
0.264
z
−
2
1
−
2
z
−
1
+
1.632
z
−
2
−
0.632
z
−
3
C(z)=\Phi(z)R(z)=\frac{0.368z^{-1}+0.264z^{-2}}{1-2z^{-1}+1.632z^{-2}-0.632z^{-3}}
C(z)=Φ(z)R(z)=1−2z−1+1.632z−2−0.632z−30.368z−1+0.264z−2
用综合除法,将
C
(
z
)
C(z)
C(z)展成无穷级数:
C
(
z
)
=
0.368
z
−
1
+
z
−
2
+
1.4
z
−
3
+
1.4
z
−
4
+
1.147
z
−
5
+
0.895
z
−
6
+
0.802
z
−
7
+
0.868
z
−
8
+
⋯
+
C(z)=0.368z^{-1}+z^{-2}+1.4z^{-3}+1.4z^{-4}+1.147z^{-5}+0.895z^{-6}+0.802z^{-7}+0.868z^{-8}+\dots+
C(z)=0.368z−1+z−2+1.4z−3+1.4z−4+1.147z−5+0.895z−6+0.802z−7+0.868z−8+⋯+
可得系统在单位阶跃作用下的输出序列
c
(
n
T
)
c(nT)
c(nT)为:
c
(
0
)
=
0.0
,
c
(
T
)
=
0.368
,
c
(
2
T
)
=
1.0
,
c
(
3
T
)
=
1.4
,
c
(
4
T
)
=
1.4
,
c
(
5
T
)
=
1.147
c
(
6
T
)
=
0.895
,
c
(
7
T
)
=
0.802
,
c
(
8
T
)
=
0.868
,
c
(
9
T
)
=
0.993
,
c
(
10
T
)
=
1.077
,
c
(
11
T
)
=
1.081
c
(
12
T
)
=
1.032
,
c
(
13
T
)
=
0.981
,
c
(
14
T
)
=
0.961
,
c
(
15
T
)
=
0.973
,
c
(
16
T
)
=
0.997
,
c
(
17
T
)
=
1.015
\begin{aligned} &c(0)=0.0,c(T)=0.368,c(2T)=1.0,c(3T)=1.4,c(4T)=1.4,c(5T)=1.147\\\\ &c(6T)=0.895,c(7T)=0.802,c(8T)=0.868,c(9T)=0.993,c(10T)=1.077,c(11T)=1.081\\\\ &c(12T)=1.032,c(13T)=0.981,c(14T)=0.961,c(15T)=0.973,c(16T)=0.997,c(17T)=1.015 \end{aligned}
c(0)=0.0,c(T)=0.368,c(2T)=1.0,c(3T)=1.4,c(4T)=1.4,c(5T)=1.147c(6T)=0.895,c(7T)=0.802,c(8T)=0.868,c(9T)=0.993,c(10T)=1.077,c(11T)=1.081c(12T)=1.032,c(13T)=0.981,c(14T)=0.961,c(15T)=0.973,c(16T)=0.997,c(17T)=1.015
6.2 采样器和保持器对系统性能的影响
实例分析:
E x a m p l e 2 : {\rm Example2:} Example2: 系统如下图所示,其中: r ( t ) = 1 ( t ) , T = 0.2 s , K = 1 r(t)=1(t),T=0.2{\rm s},K=1 r(t)=1(t),T=0.2s,K=1,分析采样器和零阶保持器的影响。
解:
如果没有采样器和零阶保持器,则成为连续系统,闭环传递函数为:
Φ
(
s
)
=
1
s
2
+
s
+
1
\Phi(s)=\frac{1}{s^2+s+1}
Φ(s)=s2+s+11
该系统阻尼比
ζ
=
0.5
\zeta=0.5
ζ=0.5,自然频率
ω
n
=
1
\omega_n=1
ωn=1,其单位阶跃响应为:
c
(
t
)
=
1
−
1
1
−
ζ
2
e
−
ζ
ω
n
t
sin
(
ω
n
1
−
ζ
2
t
+
arccos
ζ
)
=
1
−
1.154
e
−
0.5
t
sin
(
0.866
t
+
60
°
)
\begin{aligned} c(t)&=1-\frac{1}{\sqrt{1-\zeta^2}}{\rm e}^{-\zeta\omega_n{t}}\sin(\omega_n\sqrt{1-\zeta^2}t+\arccos\zeta)\\\\ &=1-1.154{\rm e}^{-0.5t}\sin(0.866t+60°) \end{aligned}\
c(t)=1−1−ζ21e−ζωntsin(ωn1−ζ2t+arccosζ)=1−1.154e−0.5tsin(0.866t+60°)
如果只有采样器没有零阶保持器,则系统的开环脉冲传递函数为:
G
(
z
)
=
Z
[
1
s
(
s
+
1
)
]
=
0.181
z
(
z
−
1
)
(
z
−
0.819
)
G(z)=Z\left[\frac{1}{s(s+1)}\right]=\frac{0.181z}{(z-1)(z-0.819)}
G(z)=Z[s(s+1)1]=(z−1)(z−0.819)0.181z
相应的闭环脉冲传递函数为:
Φ
(
z
)
=
G
(
z
)
1
+
G
(
z
)
=
0.181
z
z
2
−
1.638
z
+
0.819
\Phi(z)=\frac{G(z)}{1+G(z)}=\frac{0.181z}{z^2-1.638z+0.819}
Φ(z)=1+G(z)G(z)=z2−1.638z+0.8190.181z
仿真曲线如下图所示:
采样器和保持器对离散系统的动态性能有如下影响:
- 采样器可使系统的峰值时间和调节时间略有减小,但使超调量增大,采样造成的信息损失会降低系统的稳定程度;
- 零阶保持器使系统的峰值时间和调节时间都加长,超调量有所增加,零阶保持器的相角滞后降低了系统的稳定程度;