大模型Agent是基于大型语言模型构建的智能体,它们能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。这类智能体的设计旨在通过感知、思考与行动三者的紧密结合来完成复杂任务。下面将从大模型大脑(LLM)、规划(Planning)、记忆(Memory)和工具(Tools)四大能力架构方面进行深度剖析。
一、大模型大脑(LLM)
LLM是智能体的核心“大脑”,负责理解和生成自然语言,处理复杂的语言任务。它通过大量文本数据训练而成,能够捕捉语言中的复杂模式,并用于各种与语言相关的任务。作为智能体的语言理解引擎,LLM使得Agent能够解析用户指令、生成回复、以及在执行任务时进行必要的推理和决策。
(1)能力范围
-
自然语言理解与生成
-
基于提示的思维链(CoT)推理、复杂任务决策
-
工具选择、函数调用意图生成
-
自我反思与任务评估(Self-reflection)
(2)职责
-
解读用户意图与任务指令
-
生成任务规划/子任务(与 Planner 模块配合)
-
决定是否调用记忆或工具,并构建调用参数
-
综合返回结果,生成自然语言响应
二、规划(Planning)
规划是大模型Agent的核心组成部分之一,它负责将复杂任务拆解为可执行的子任务,并评估执行策略。这包括子目标的分解、连续思考(即思维链)、自我反思和批评以及对过去行动的反思。例如,通过使用ReAct框架,Agent不仅能够推理出下一步应该采取什么行动,还能根据结果调整其策略,从而在动态环境中有效地工作。此外,还有其他方法如思维树(Tree of Thoughts, ToT),通过探索多个推理路径形成树状结构,以找到最佳解决方案。
(1)核心任务
-
目标分解:将复杂任务拆分为可执行的子任务。
-
顺序安排:合理安排子任务的先后顺序。
-
动态调整:根据执行情况动态调整计划。
(2)实现形式
-
LLM 推理式规划(如 ReAct、Chain of Thought)
-
显式 Planner 模块(如 AutoGPT 中的 Task Manager)
-
与工具协作规划(如调用 API 查询再决定下一步)
(3)典型技术
-
Tree-of-Thoughts(ToT)
-
Plan-and-Execute 框架
-
LangGraph 状态机流程规划
三、记忆(Memory)
记忆系统在大模型Agent中扮演着至关重要的角色,它涵盖了短期记忆和长期记忆。短期记忆主要用于存储会话上下文,支持多轮对话;长期记忆则涉及信息的长时间保留和检索,通常利用外部向量存储和快速检索技术实现。例如,通过使用双塔密集检索模型的记忆检索机制,可以增强Agent的记忆能力,使其能够在需要时查询相关的历史数据或知识库内容。
(1)记忆类型
-
短期记忆:当前对话或任务窗口上下文
-
长期记忆:跨任务、跨时间的历史记录或知识
-
工作记忆:执行某一步任务时的临时状态
(2)存储结构
-
向量数据库(如 FAISS, Weaviate, Milvus)
-
文本检索系统(BM25, RAG)
-
层次记忆(层级结构化记忆存储)
四、使用工具(Tool use)
工具是Agent感知环境、执行决策的辅助手段。它们可以通过API调用、插件扩展等方式集成到Agent中,从而扩展其功能范围。例如,通过接入搜索引擎、数据库或其他特定领域的API,可以使Agent处理更加复杂的任务。LangChain等框架提供了灵活的工具集成接口,使得开发者可以轻松地将各种工具整合进自己的Agent项目中。
(1)工具类型
-
检索工具:搜索引擎、知识库
-
计算工具:Python 计算器、代码执行器
-
环境接口:浏览器、数据库、文件系统
-
第三方服务:API、插件(如 PDF 阅读、SQL 查询)
(2)技术实现
-
OpenAI Function/Tool Call(自动决定是否调用)
-
LangChain / LlamaIndex 工具封装
-
自定义 Tool 包 + DSL(如 AutoGen 的 tool agent)
LLM 驱动的自主Agenthttps://lilianweng.github.io/posts/2023-06-23-agent/