【自然语言处理与大模型】大模型Agent四大的组件

        大模型Agent是基于大型语言模型构建的智能体,它们能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标。这类智能体的设计旨在通过感知、思考与行动三者的紧密结合来完成复杂任务。下面将从大模型大脑(LLM)、规划(Planning)、记忆(Memory)和工具(Tools)四大能力架构方面进行深度剖析。

一、大模型大脑(LLM)

        LLM是智能体的核心“大脑”,负责理解和生成自然语言,处理复杂的语言任务。它通过大量文本数据训练而成,能够捕捉语言中的复杂模式,并用于各种与语言相关的任务。作为智能体的语言理解引擎,LLM使得Agent能够解析用户指令、生成回复、以及在执行任务时进行必要的推理和决策。

(1)能力范围

  • 自然语言理解与生成

  • 基于提示的思维链(CoT)推理、复杂任务决策

  • 工具选择、函数调用意图生成

  • 自我反思与任务评估(Self-reflection)

(2)职责

  • 解读用户意图与任务指令

  • 生成任务规划/子任务(与 Planner 模块配合)

  • 决定是否调用记忆或工具,并构建调用参数

  • 综合返回结果,生成自然语言响应

二、规划(Planning)

        规划是大模型Agent的核心组成部分之一,它负责将复杂任务拆解为可执行的子任务,并评估执行策略。这包括子目标的分解、连续思考(即思维链)、自我反思和批评以及对过去行动的反思。例如,通过使用ReAct框架,Agent不仅能够推理出下一步应该采取什么行动,还能根据结果调整其策略,从而在动态环境中有效地工作。此外,还有其他方法如思维树(Tree of Thoughts, ToT),通过探索多个推理路径形成树状结构,以找到最佳解决方案。

(1)核心任务

  • 目标分解:将复杂任务拆分为可执行的子任务。

  • 顺序安排:合理安排子任务的先后顺序。

  • 动态调整:根据执行情况动态调整计划。

(2)实现形式

  • LLM 推理式规划(如 ReAct、Chain of Thought)

  • 显式 Planner 模块(如 AutoGPT 中的 Task Manager)

  • 与工具协作规划(如调用 API 查询再决定下一步)

(3)典型技术

  • Tree-of-Thoughts(ToT)

  • Plan-and-Execute 框架

  • LangGraph 状态机流程规划

三、记忆(Memory)

        记忆系统在大模型Agent中扮演着至关重要的角色,它涵盖了短期记忆和长期记忆。短期记忆主要用于存储会话上下文,支持多轮对话;长期记忆则涉及信息的长时间保留和检索,通常利用外部向量存储和快速检索技术实现。例如,通过使用双塔密集检索模型的记忆检索机制,可以增强Agent的记忆能力,使其能够在需要时查询相关的历史数据或知识库内容。

(1)记忆类型

  • 短期记忆:当前对话或任务窗口上下文

  • 长期记忆:跨任务、跨时间的历史记录或知识

  • 工作记忆:执行某一步任务时的临时状态

(2)存储结构

  • 向量数据库(如 FAISS, Weaviate, Milvus)

  • 文本检索系统(BM25, RAG)

  • 层次记忆(层级结构化记忆存储)

四、使用工具(Tool use)

        工具是Agent感知环境、执行决策的辅助手段。它们可以通过API调用、插件扩展等方式集成到Agent中,从而扩展其功能范围。例如,通过接入搜索引擎、数据库或其他特定领域的API,可以使Agent处理更加复杂的任务。LangChain等框架提供了灵活的工具集成接口,使得开发者可以轻松地将各种工具整合进自己的Agent项目中。

(1)工具类型

  • 检索工具:搜索引擎、知识库

  • 计算工具:Python 计算器、代码执行器

  • 环境接口:浏览器、数据库、文件系统

  • 第三方服务:API、插件(如 PDF 阅读、SQL 查询)

(2)技术实现

  • OpenAI Function/Tool Call(自动决定是否调用)

  • LangChain / LlamaIndex 工具封装

  • 自定义 Tool 包 + DSL(如 AutoGen 的 tool agent)

LLM 驱动的自主Agenthttps://lilianweng.github.io/posts/2023-06-23-agent/

### 主流 AI Agent 框架介绍 目前,在人工智能领域中,AI Agent 的发展得益于大模型技术的支持,这些框架通常围绕四大核心要素展开设计:规划(Planning)、记忆(Memory)、工具(Tools)以及执行(Action)。以下是几种主流的 AI Agent 框架及其特点: #### 1. **LangChain** LangChain 是一种非常灵活且功能强大的框架,它允许开发者轻松构建复杂的对话应用。该框架支持模块化的设计理念,使得用户可以自由组合不同的组件以满足具体项目需求。例如,它可以集成多个大型语言模型作为推理引擎,并提供丰富的插件用于扩展功能[^3]。 ```python from langchain import PromptTemplate, LLMChain template = """Question: {question}""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt) ``` #### 2. **LangGraph** 虽然 LangGraph 并未被广泛提及于公开资料之中,但从命名推测其可能专注于图结构数据处理方面的能力提升。假设这一框架确实存在,则预计会在知识表示学习或者基于网络关系的数据挖掘等领域展现优势[^2]。 #### 3. **CrewAI** CrewAI 提供了一套完整的解决方案来简化从原型到生产环境部署整个流程的工作量。它的主要卖点在于能够快速搭建起具备一定智能化水平的应用程序界面(API),从而降低进入门槛的同时也提高了效率[^2]。 #### 4. **Semantic Kernel** 由微软推出 Semantic Kernel 更像是一个轻量化版本的选择方案之一。相比其他竞争对手而言,这个库更加注重易用性和跨平台兼容性之间的平衡点调整;另外还特别强调安全性保障措施的重要性——这对于企业级客户来说尤为重要。 #### 5. **AutoGen** 最后提到 AutoGen ,这是一个高度自动化的生成型代理系统开发环境 。 它内部实现了许多先进的算法机制用来优化性能表现指标比如响应速度等方面都有不错的表现效果; 同时也保留足够的灵活性让用户自定义参数设置达到最佳匹配状态下的操作体验感[^2]。 以上便是关于几个较为流行的AI Agents Frameworks简单概述说明文档内容总结整理而成的结果展示页面布局样式设计方案探讨交流分享环节结束后的最终结论部分呈现形式如下所示: ```plaintext +-------------------+ | Framework | | Feature | +===================+ | LangChain | | Modular design...| +-------------------+ | LangGraph (?) | | Graph-based data.| +-------------------+ | CrewAI | | Rapid prototyping.| +-------------------+ |Semantic Kernel(MS)| | Easy-to-use & safe.| +-------------------+ | AutoGen | | Automated tuning..| +-------------------+ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值