
大模型提示工程Promt工程
文章平均质量分 93
大模型
量化交易曾小健(金融号)
曾小健,本博客专注于量化金融/交易,AI大模型等技术驱动的量化研究,传统金融/会计、金融风险管理、商科MBA、商务交流与沟通、领导力、营销、传播理论等;及一点点量子物理、免疫与健康;
背景:计算机博士,英国金融本科,出版书籍多部,多年金融、AI、等相关实战/一线工程师经验。
AI+生成式/通用人工智能技术请移步CSDN:AI生成曾小健
展开
-
Reward Modelling(RM)and Reinfo
精选 原创©著作权文章标签文章分类阅读数Reward Modelling(RM)and Reinforcement Learning from Human Feedback(RLHF)for Large language models(LLM)技术初探。原创 2023-06-16 17:03:58 · 1020 阅读 · 0 评论 -
LLaMA, ChatGLM, BLOOM的参数高效微调实践
本文首先从训练数据、tokenizer和模型结构细节上对比了LLaMA、ChatGLM和BLOOM这三个主流的开源大语言模型,并介绍了这三个基座模型的衍生模型;接着详细介绍了不同大语言模型在tokenizer、layer normalization、激活函数和位置编码的模型细节;然后讲述了prompt tuning、prefix tuning、LLaMA- adapter和LoRA这些参数高效微调方法;最后对比了不同基座语言模型和不同微调方法的效果。原创 2023-06-16 14:32:34 · 1587 阅读 · 0 评论 -
T5全称是Text-to-Text Transfer Transformer,使用文本生成的方式来解决各种自然语言处理任务,例如机器翻译、摘要、问答等。
本文主要介绍了两类可以用于零样本文本分类的模型。基于自然语言推理的零样本分类模型:适用于对模型推理时间不敏感的低资源文本分类场景,在抹零战役工单分类任务中,表现出了优异的性能。基于文本生成的零样本学习模型:适用于对模型推理时间要求较高的低资源本文分类场景,同时还能进行其他任务的零样本学习。而本文介绍的模型在分类场景下进行了特定的数据增强,大幅提高了分类的稳定性,相比于其他模型更加适合应用于零样本文本分类场景。原创 2023-06-14 17:23:56 · 2349 阅读 · 0 评论 -
零样本和少样本学习
零样本和少样本学习方法减少了对注释数据的依赖。因此对于新的领域和收集数据的困难的领域他们是很重要的。少样本(Few-Shot Learning FSL)是一种机器学习问题(由E, T和P指定),其中E只包含有限数量的例子,并带有监督信息。现有的FSL问题主要是监督学习问题。零样本学习(Zero-shot learning, ZSL)是机器学习中的一个问题解决方案,学习者在测试时从训练中没有观察到的类中观察样本,并预测他们所属的类。原创 2023-06-08 18:07:45 · 471 阅读 · 0 评论 -
Prompt+低代码开发实战
近期 AIGC 狂潮席卷,“前端走向穷途”“低代码时代终结”的言论甚嚣尘上。事实上 GPT 不仅不会干掉低代码,反而会大幅度促进低代码相关系统的开发。本文会介绍 GPT Prompt Engineering 的基本原理,以及如何帮助低代码平台相关技术快速开发落地的技术方案。接着往下看吧~1 提示工程1.1 提示工程基本概念1.2 如何使用 OpenAI/Chatgpt 做提示工程测试1.4 提示工程技巧-少样本提示(few shot)原创 2023-06-08 17:57:53 · 1301 阅读 · 0 评论