
量化金融求职
文章平均质量分 84
量化交易曾小健(金融号)
曾小健,本博客专注于量化金融/交易,AI大模型等技术驱动的量化研究,传统金融/会计、金融风险管理、商科MBA、商务交流与沟通、领导力、营销、传播理论等;及一点点量子物理、免疫与健康;
背景:计算机博士,英国金融本科,出版书籍多部,多年金融、AI、等相关实战/一线工程师经验。
AI+生成式/通用人工智能技术请移步CSDN:AI生成曾小健
展开
-
金融需要多样性,量化需要C++!通过本文,你可以知道:1、为什么是C++
而Python的优势主要在于相对简单易学,且拥有NumPy、Pandas、SciPy等高性能的库,便于进行各种统计和运算,以及数据的处理和分析。在量化交易做市交易过程中,交易标的多达成百上千个,面对繁多的交易品种,开发“低延迟”交易系统是必然选择,所以自然需要相当多的C++开发人员。在实际业务操作中,就要求以“低延迟”的快速交易保证成交,以及捕捉市场上的信息延迟进行套利,以此保证做市交易的低风险。量化交易追求的就是速度,尤其是高频交易,所以量化机构更倾向于聘用精通C++的人选做系统开发。原创 2024-03-13 18:09:56 · 1565 阅读 · 0 评论 -
Smart Beta
(在投资领域内“Beta”指来源于整体投资市场的平均收益,传统市值加权的指数基金,目标就是获取整体投资市场的平均收益;“Alpha”则指投资市场的超额收益,主动管理型基金的目标就是获取市场的超额收益。的指数基金,有不同策略的 Smart Beta 指数供 Smart Beta 指数基金追踪,但在债券等其他领域也有应用。Smart Beta 投资策略的理论基础是因子投资(Factor Investing),策略收益来自于因子的风险溢价。(2019年10月3日)(2019年10月3日)获取的 Beta 收益。原创 2024-01-15 05:57:22 · 1181 阅读 · 0 评论 -
一文看懂决策树(Decision Tree)
决策树是一个预测模型,它代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,而每个叶节点则对应从根节点到该叶节点所经历的路径所表示的对象的值。从数据产生决策树的机器学习技术叫做决策树学习,通俗说就是决策树。一个决策树包含三种类型的节点:决策节点:通常用矩形框来表示机会节点:通常用圆圈来表示终结节点:通常用三角形来表示决策树视图决策树是一树状结构,它的每一个叶节点。原创 2024-01-14 03:07:40 · 1198 阅读 · 0 评论 -
欧洲(德国)金融量化求职就业一
但是我始终坚信了解这行基本风格是必备软实力,因为一般来说不论什么岗位,必然在拿offer前有类似的why quant问题,如果连最基本的行业信息都不了解的话,有可能在chemistry上不匹配被挂。众所周知,前台中后台完全是不同的模式。除了看岗位性质,也要看你所感兴趣的组的业务,也就是这些买方的客户是谁,钱是养老金还是有钱人的闲钱。说完买方插播几句,要注意的是卖方也有买方岗位, 所以说不是说bank的岗位就一定是卖方。类似B这种很小的买方,初期基本上都是要承担压力的核心岗位,基本不会有中后台的岗位的。原创 2023-11-28 06:31:13 · 1095 阅读 · 0 评论