
量化金融
文章平均质量分 82
量化交易曾小健(金融号)
曾小健,本博客专注于量化金融/交易,AI大模型等技术驱动的量化研究,传统金融/会计、金融风险管理、商科MBA、商务交流与沟通、领导力、营销、传播理论等;及一点点量子物理、免疫与健康;
背景:计算机博士,英国金融本科,出版书籍多部,多年金融、AI、等相关实战/一线工程师经验。
AI+生成式/通用人工智能技术请移步CSDN:AI生成曾小健
展开
-
Optiver股票大赛Top2开源!
基于时间序列的对抗验证,我们发现非常多的特征随着时间的变化影响很大,例如order_count和total_volume这些,所以我们将其转化为在某个时间点的rank进行处理,与此同时,使用np.log1p对大的skew大的值进行处理。而本次比赛,也不例外,从赛后和前五的选手交流以及目前第二名选手的开源的来看,几乎全部都涉及到了时间信息的逆向特征工程。逆向的思路是:在本次竞赛中,因为竞赛数据是经过匿名化的,但是我们可以使用tick size来恢复在匿名之前的真实价格;模型处和开源的是类似的,原创 2024-10-01 23:31:26 · 524 阅读 · 0 评论 -
RD-Agent Windows安装教程
接下来如果直接运行官方代码的话会遇到各种报错,主要是docker安装时的网络问题以及程序并行的问题。所以在运行之前,首先从星球获取修改后的Dockerfile,替换官方的rdagent\scenarios\qlib\docker\Dockerfile,接下来就可使用rd-agent自动搭建模型。这是运行两轮的结果,可以看到,通过LLMs构建的模型能够自动适配qlib并且输出结果,而且随着轮数增加,模型效果也会不断提升。目前还不支持其他LLMs的API, 等后面有时间我们再增加对于其他大模型的支持。原创 2024-10-01 23:20:52 · 1373 阅读 · 0 评论 -
隐马尔可夫模型在股市预测中的应用
股市因其复杂多变的特性,预测未来股价一直是一个挑战。然而,运用高级方法可以显著提高股价预测的准确性。隐马尔可夫模型(Hidden Markov Models,HMMs)是一种统计模型,能够模拟部分可观测系统的行为,因此非常适合基于历史数据建模股价。本文训练并测试了一个隐马尔可夫模型,目的是基于开盘价和前一天的价格预测股票收盘价。模型的性能通过两个指标进行评估:平均绝对百分比误差(Mean Average Prediction Error,MAPE)和方向预测精度(Directional。原创 2024-10-01 22:37:19 · 1302 阅读 · 0 评论 -
AKShare-股票数据-相关股票
数据科学实战2024年10月01日 13:53。原创 2024-10-01 20:18:39 · 792 阅读 · 0 评论 -
商品期货多因子 全市场对冲模型
文章梳理了影响商品期货溢价的因子,总结了学术界和业界提出的构建商品期货多空组合的11大类因子(绝大多数均有正收益,其中期限结构、价值和偏度因子正收益率最为显著),其中既包括广泛讨论的动量因子、期限结构因子、特质波动率等因子,同时还探讨了2010年以后兴起的持仓情况因子、流动性因子、通胀因子、汇率因子等影响期货定价的因子。期货现货基差指的是期货合约价格与现货价格的差值,现货价格不像期货价格,没有统一的权威的参照,很多大宗商品由于各地区运输成本的存在,差别各异,所以现货价格参照的选取就很讲究了。原创 2024-07-07 02:39:10 · 1493 阅读 · 0 评论 -
Time-MoE : 时间序列领域的亿级规模混合专家基础模型
随着深度学习技术的发展,大规模预训练模型在自然语言处理和计算机视觉领域取得了显著进展,但在时间序列预测领域,这些模型的规模和运算成本仍然限制了其在实际应用中的效能。尽管这些模型前景广阔,但与特定领域的模型相比,它们的规模通常较小,任务解决能力有限,这限制了它们在实际应用中的预测精度与计算预算之间的平衡。本文介绍的TIME-MOE模型,通过利用专家混合的稀疏设计,提高了计算效率,同时在多个基准测试中实现了显著的预测精度提升。尽管这些模型在各自的领域内取得了有竞争力的性能,但它们通常是任务特定的,并且在。原创 2024-09-28 22:25:10 · 1877 阅读 · 0 评论 -
HATS:分层图注意力神经网络用于股票预测
此外,还讨论了注意力机制在图神经网络中的应用,这种机制可以为不同邻居节点的信息分配不同的权重,以选择性地聚合特征,这对于后续的节点分类和图分类任务至关重要。基本面分析师通过深入研究公司的财务状况和盈利能力来评估其证券的内在价值,而技术分析师则专注于分析股票价格的时间序列数据,寻找可盈利的模式,这两种方法都对股市预测有着重要的影响。作者指出,利用图结构数据和关系数据的潜力尚未被充分挖掘,并提出了HATS模型,这是一个创新的层次化图注意力网络,旨在通过更智能地聚合不同类型关系的信息来提高股市预测的准确性。原创 2024-08-11 17:41:12 · 1545 阅读 · 0 评论 -
ProbTS:时间序列预测的统一评测框架
在 ProbTS 框架下的研究结果显示:首先,在长程及短程预测中,长程点预测的方法因定制化的神经架构在长程场景中表现出色,但在短程案例和复杂数据分布中表现不佳,并且因为缺乏对预测不确定性的量化评估,导致其与概率模型相比在应对复杂数据分布情况下存在显著的性能差距。研究员们通过 ProbTS 工具,不仅对预测研究的关键方法论差异进行了探讨,还对各类时间序列预测的经典模型和基础模型进行了评测,揭示了现有时间序列预测研究中存在的问题,以及各模型的优劣势所在,进而对该领域未来的研究方向进行了梳理。原创 2024-07-15 00:12:15 · 1113 阅读 · 0 评论 -
基于加密货币市场的趋势择时策略表现研究
技术分析手段,尤其是趋势择时策略,在传统资本市场中已被广泛使用,但在加密货币市场中的应用和效果尚未得到充分研究。- MACD策略在所有三种加密货币中均能获得正的超额收益,尤其是MACD柱状图策略在以太坊和瑞波币中表现突出。- 趋势择时策略在加密货币市场中具有显著的预测能力,能够为投资者带来比买入并持有策略更高的超额收益和夏普比率。- 研究表明,加密货币市场可能存在无效性,但随着市场成熟和监管加强,市场有效性在增强。文章的结构清晰,研究方法严谨,为理解加密货币市场中的交易策略提供了宝贵的见解。原创 2024-07-10 13:48:05 · 728 阅读 · 0 评论 -
Qlib库介绍
我们通过完成相同的任务来评估几种存储解决方案的性能,该任务根据股票市场的基本 OHLCV 每日数据(2007 年至 2020 年每天 800 只股票)创建一个数据集(14 个特征/因素)。例如,1) 使用监督学习从丰富且异构的金融数据中挖掘市场复杂的非线性模式,2) 使用自适应概念漂移技术对金融市场的动态性质进行建模,以及 3) 使用。由于金融市场环境的非平稳性,不同时期的数据分布可能会发生变化,这使得建立在训练数据上的模型的性能在未来的测试数据中出现衰减。目前,Qlib 为其中的几个提供了一些解决方案。原创 2024-05-19 16:08:25 · 1183 阅读 · 0 评论 -
QuantML-Qlib LLM | GPT-4o复现因子计算代码
在使用image_to_code.py之前,需先行配置OpenAI的API密钥(请自行获取)或Kimi的refresh token(详见free-kimi-api),并将其记录于QuantML-Qlib根目录下的.env文件中,以确保系统能够顺利读取这些配置信息。通常来讲,在本地调用大模型有两种方案,一是使用商业API接口,利用gpt,kimi等,二是在本地部署开源大模型,例如qwen,llama等。,该日历对券商研究报告中的因子进行了系统的梳理和总结,极大地减少了投资者自行搜集和整理因子信息的工作量。原创 2024-05-19 16:02:30 · 1542 阅读 · 0 评论 -
QuantML-Qlib开发版 | AAAI最佳论文Informer用于金融市场预测【附代码】
背景:许多实际应用需要预测长序列时间序列,例如电力消费规划。这要求模型能够捕捉输入和输出之间的精确长距离依赖关系。现有问题:现有的Transformer模型在处理长序列时间序列预测时存在一些问题,包括二次时间复杂度、高内存使用率和编码器-解码器架构的固有限制。Informer模型:为了解决这些问题,作者设计了一个高效的基于Transformer的模型,具有三个显著特点:ProbSparse自注意力机制:时间复杂度和内存使用为O(L log L),能够在序列依赖对齐上取得可比的性能。原创 2024-05-19 15:57:14 · 1709 阅读 · 0 评论 -
[量化人物]最珍惜数理天才的量化大佬!缅怀颠覆华尔街的詹姆斯·西蒙斯
更有趣的是,文艺复兴会邀请应聘者在黑板上解决数学、物理、统计学、计算机科学等方面的问题。文艺复兴独特的招聘之道,像极了大学教职申请,而不像是投资机构招聘。在文艺复兴公司,不同员工做的事情会相互影响,每周的研究会上他们能看到别人的工作、也会对别人的工作提出一些建议。公司的整体气氛比较随意和重视学术性,同时充满了酷似考试周的紧迫感。既然聘请了最难请的人,文艺复兴也尝试用独特的方法去激励他们。一家海外金融机构薪资网站显示:文艺复兴软件开发人员的基本薪资为16万美元/年;原创 2024-05-18 18:34:37 · 1622 阅读 · 0 评论 -
[量化人物] | 被称为行走的绿皮书,和OptiverCEO合影!来围观她不断上分的一生
学生可以选择非常多的做project课程,并且毕业前也必须要完成为某家公司提供服务的项目,所以Elina在本科阶段做了许多数据分析、编程类的项目,其中不少侧重实际应用,以此来锻炼一个学生如何去解决问题的能力,比如如何更好地设计代码,或在流程中要把握哪些重点的能力(数据收集、数据处理、模型训练等)。(models and tuning),具体研究人脸识别相关的模型的构建和数据的处理,比如一些常见的computer version的model的调参,尝试不同的网络架构,以及清洗数据。原创 2024-05-18 18:27:40 · 925 阅读 · 0 评论 -
看完这6门量化课,我现在强得可怕
课程讲解得非常细致,详尽介绍了如何使用Python进行金融分析和算法交易等技术,涵盖了Python编程基础至复杂金融模型的构建,案例丰富,涵盖金融领域的大多数应用场景,通过实际案例的学习,将显著提升编写代码的逻辑性和效率。量化融合了数学的严谨与金融的动态,它不仅要求你精通数学和概率统计,还需要具备扎实的编程能力和金融知识。这个五一小长假,除了享受假日的悠闲,你也可以换种玩法,利用一些免费的学习资源提升自己的各项技能,悄悄“卷”起来,精进自己的职涯“杀手锏”。原创 HFA Community。原创 2024-05-18 16:45:05 · 1073 阅读 · 0 评论 -
金融学里的有效前沿理论
金融学里的有效前沿理论Poe有效前沿(Efficient Frontier)理论是现代投资组合理论(Modern Portfolio Theory, MPT)的核心概念之一。由哈里·马科维茨(Harry Markowitz)在1952年提出,这一理论帮助投资者理解如何通过资产配置来优化投资组合的预期回报和风险。原创 2024-05-18 14:00:11 · 2248 阅读 · 0 评论 -
WWW‘24 | 课程学习CL+模仿学习IL用于ETF及商品期货交易
背景:尽管课程学习和模仿学习在机器人领域得到了广泛应用,但在处理高度随机的金融时间序列数据控制任务上的研究却很少。方法:文章通过数据增强实现了课程学习的基础思想,并通过从预言者(oracle)中提取策略来实现模仿学习。发现:研究发现课程学习是提高复杂时间序列控制任务性能的一个新方向。尽管在基线调整中给予了基线优势,但随机种子外样本实证研究和消融研究对课程学习非常有利。另一方面,模仿学习应谨慎使用。原创 2024-05-04 16:49:16 · 736 阅读 · 0 评论 -
【高频】基于GBDT-FM模型的level-2高频数据实证研究(二)
通过观察其他时间段的预测结果,部分预测结果显示,部分标记点密集的区域,价格却未给出明确的走势,在下一段时间出现震荡,意味着市场买卖双方存在博弈,一种解释是订单簿只显示了未成交订单的情况,而市价单对价格的走势更具有决定性作用,其次,通过阅读国外文献,本文认为冰山订单与探针类订单干扰了限价订单簿传递信息的作用,一些交易者为了试探“冰山订单”的存在或出于其他目的,会抛出大量订单然后撤回,这导致了订单簿上的信息并不能完全反应市场的真实需求,最后经分析发现当天的撤单量占总订单量的46%。原创 2024-04-25 21:46:52 · 1287 阅读 · 0 评论 -
【ML】用遗传规划进行因子挖掘
经过观察挖掘出来的因子,大多跟股票的成交情况有关,而差分、截距、斜率时间序列相关的算子被应用的较多,或者进行了类似2/3阶导的操作,捕捉成交(高维度)变化的信号。,但想到各优化目标之间的配比权重其实也是个优化目标。综上,使用GP挖掘因子可以拓展思维,引入非线性运算,实现归纳演绎。对于时间序列算子,为了使因子更具备解释意义,移动窗口的。可为人工挖掘因子提供灵感,或者定义新的算子。),分别代表的时间区间是周,两周,一月。因子的结果预期,定义编码方式。,筛选出alpha因子。,并使用换手率评估交易成本。原创 2024-04-21 22:35:44 · 2124 阅读 · 0 评论 -
Crypto量化高频体验总结
人工智能与量化交易算法知识库美国以下文章来源于Quant搬砖工 ,作者quant搬砖队工头Quant搬砖工.稳健的收益要一点一点赚,量化的板砖要一块一块搬!前言前两天在翻历史文章的时候,看到我自己21年1月的时候写了个什么币圈量化入门的文章,翻进去第一反应是,这写的都是啥啊,难怪没人看。所以,就更新下近两年来币圈量化的体验,也算做个记录。事先声明:以下内容都是基于OKX的实践,没有任何利益相关,主要API开发文档比较详细,所以就稍微在这个基础上踩坑一下。爱过!但是高频真的坑很多!原创 2024-04-21 22:19:01 · 7623 阅读 · 2 评论 -
幻方量化开源国内首个MoE大模型,全新架构、免费商用
这种方法的核心是将复杂任务划分为更小、更易管理的子任务,每个子任务由专门的小型模型或 “专家” 负责,然后根据输入数据的特性选择性地激活这些 “专家”。今年 4 月,幻方量化发布公告称,公司将集中资源和力量,全力投身到服务于全人类共同利益的人工智能技术之中,成立新的独立研究组织,探索 AGI 的本质。技术报告:https://github.com/deepseek-ai/DeepSeek-MoE/blob/main/DeepSeekMoE.pdf。专家 (Experts):训练有素的小型神经网络。原创 2024-04-20 23:30:11 · 2983 阅读 · 0 评论 -
ICLR 2024 | FTS-Diffusion: 用于合成具有不规则和尺度不变模式的金融时间序列的生成框架
SISC算法首先通过一个初始化过程来准备候选的聚类中心,然后使用DTW距离来比较候选长度的子序列与聚类中心的距离,从而找到最优的分段。实验结果证实了FTS-Diffusion在合成与观测数据相似的金融时间序列方面的有效性,并为下游任务提供了有用的数据。为了捕捉这些状态的时序动态,论文引入了一个模式演变网络,该网络学习给定当前状态的情况下下一个模式的概率以及相应的持续时间和幅度的缩放因子。编码器将可变长度的序列拉伸成固定长度的表示,而解码器则从固定长度的表示重构出可变长度的序列。,用于模拟金融时间序列中的。原创 2024-04-20 23:23:30 · 1485 阅读 · 0 评论 -
AAAI-24 | EarnHFT:针对高频交易的分层强化学习(RL)框架 附代码实现
路由器的训练使用DDQN算法,但由于代理池中的代理数量仍然很大,EarnHFT利用代理池的先验知识来细化交易中的选择。具体来说,在选择低级代理之前,系统会确保所选模型的初始位置与当前位置相同,从而将可能的低级代理数量减少到m个。,通过复杂的计算机算法或数学模型在极短的时间内下单或取消订单。尽管强化学习算法在传统金融市场的低频交易中取得了杰出成果,但在HFT环境下,由于上述两个挑战,很少有算法能够保持稳健的性能。讨论了在HFT中使用的高频技术指标,以及在量化交易中提出的各种深度强化学习方法。原创 2024-04-20 11:57:03 · 1963 阅读 · 0 评论 -
周期规律的应用(上)——双因子定价模型的应用:择时与配置
在实际的应用过程中,战略方向的判断是有一定参考价值的,可以结合短期的趋势确认信号或者风险控制措施,把资产的小波段刻画得更精细,应该能有更好的增益结果。而风格因子是不同资产之间的相对强弱。我们发现双因子定价模型是一套自上而下的通用框架,在海外的资产上是适用的,在 A股的资产上也有效,在行业轮动、ETF轮动上均能实现较好的策略效果,甚至对。举一个简单的例子,底层数据里面有18个全球主要的股票指数,这18个序列本身同步性很强,甚至能够被市场因子和风格因子所共同刻画的信息量也很多,但不同的市场依然存在不同的逻辑。原创 2024-04-20 11:50:40 · 1715 阅读 · 0 评论 -
KDD‘23 | AlphaMix: 高效专家混合框架(MoE)显著提高上证50选股表现
原创 QuantML QuantML 2024-04-18 09:17 上海Content本文提出了一个名为AlphaMix的新型三阶段专家混合(Mixture-of-Experts,MoE)框架,旨在模拟现实世界交易公司中高效的自底向上的交易策略设计工作流程,以进行量化投资。提出了AlphaMix,这是首个针对量化投资的专家混合框架。在真实世界数据上进行了实验,证明了AlphaMix在多个财务标准上显著优于11个现有的最先进基线方法。AlphaMix框架分为三个阶段:利用个性化的市场理解和交易风格来训练多原创 2024-04-20 00:08:44 · 835 阅读 · 0 评论 -
离职Quant手撕Kronos——埋700个bug亏1000万
所以说,公司还是务实一些好,所有的这种监管措施都是成本,羊毛出在羊身上,本质上也是从收益中来。此次事件之后,这种公司肯定会加大代码审查力度,比如每改一个参数都要留痕,甚至写文档,说明理由等等,然后还要专人复核。在高速发展的高频交易领域,时机稍纵即逝,你这边策略研发上线流程过长,竞争对手那边短平快,长远来看也会对自己不利。还是那句话,少一点套路,多一分真诚,大家都过得轻松愉快些。原创 2024-04-14 14:50:01 · 1068 阅读 · 0 评论 -
金融需要多样性,量化需要C++!通过本文,你可以知道:1、为什么是C++
而Python的优势主要在于相对简单易学,且拥有NumPy、Pandas、SciPy等高性能的库,便于进行各种统计和运算,以及数据的处理和分析。在量化交易做市交易过程中,交易标的多达成百上千个,面对繁多的交易品种,开发“低延迟”交易系统是必然选择,所以自然需要相当多的C++开发人员。在实际业务操作中,就要求以“低延迟”的快速交易保证成交,以及捕捉市场上的信息延迟进行套利,以此保证做市交易的低风险。量化交易追求的就是速度,尤其是高频交易,所以量化机构更倾向于聘用精通C++的人选做系统开发。原创 2024-03-13 18:09:56 · 1565 阅读 · 0 评论 -
CGFT一级课程 -- 特许全球金融科技师CGFT
CGFT一级课程CGFT二级课程 CGFT三级课程认知课程金融科技核心认知框架及方法论会计学与财务分析基础金融学基础大数据技术原理及应用区块链技术原理及应用Python语言基础机器学习原理及应用敏捷思维零基础解读以及应用案例课程行业前沿应用及最佳实践金融科技技术场景全景图以TiDB为例解读产品思维应用以企业微信为例解读数字化营销的流量思维应用课程实务操作指导及应用课程用产品思维撬动数字时代创新金融科技的燃料—大数据。原创 2024-02-21 06:15:00 · 377 阅读 · 0 评论 -
综合交易模型教程---qmt实盘链接,提供源代码
目前框架实盘全部完成了,后面写教程,每一个函数怎么样使用,怎么样开发自己的策略。源代码全部上传,感兴趣的可以直接下载,运行交易。源代码非常简单,10行就实现了自动交易。非常的不错,看看星期一能不能发红包。模拟盘现在登录不了我直接实盘展示。代码非常的简单10行代码不到。非常快,继续运行我的实盘策略。运行的效果,后面讲解源代码。后面封装的源代码非常多。原创 2024-02-17 06:05:44 · 1702 阅读 · 0 评论 -
QuantNet 2024金融工程排名:巴鲁克第一,麻省才排第九 vs Risk.net
原创 2024-01-27 02:33:02 · 251 阅读 · 0 评论 -
大饼量化的性能考虑
至于对接不同交易所的接口,申请服务器,网络流量监控,服务器内存、CPU监控,这些也属于后台业务,技术性较强的后台,这个应该也没什么异议。当然了,正如《年会不能停》里面说的,“问题的关键就是关键的问题,你们想清楚了再跟我说,我没有那么多时间”,其实这种领导也挺好当的。t,那么总量肯定超,然后交易所会有限频,情节较轻的警告,严重的封锁IP地址,有的交易所几个小时恢复,有的几天。应该说,大饼的业务,其实是非常适合量化的。,其实做法可以非常多,比如永续跟现货之间的套利,不同交易所的套利,不同合约之间的套利,原创 2024-01-20 17:02:47 · 624 阅读 · 0 评论 -
Smart Beta
(在投资领域内“Beta”指来源于整体投资市场的平均收益,传统市值加权的指数基金,目标就是获取整体投资市场的平均收益;“Alpha”则指投资市场的超额收益,主动管理型基金的目标就是获取市场的超额收益。的指数基金,有不同策略的 Smart Beta 指数供 Smart Beta 指数基金追踪,但在债券等其他领域也有应用。Smart Beta 投资策略的理论基础是因子投资(Factor Investing),策略收益来自于因子的风险溢价。(2019年10月3日)(2019年10月3日)获取的 Beta 收益。原创 2024-01-15 05:57:22 · 1181 阅读 · 0 评论 -
量化策略:基于AdaBoost的投资模型
既然模型本身是考虑股票的相对收益,自然想到测试模型在中性策略上的表现,中性策略使用沪深300股指期货做对冲工具,选股方式不变,回测结果如下,2010年1月至2018年8月累计收益60%,年化约7%,但未考虑保证金问题,如果保证金是30%,就会有30%闲置资金,折算后大概每年4.5%左右的收益,从图中可以看出,中性组合的超额收益明显和市场的相关性较低。既然是风格轮动模型,我们自然关心每个月进行选股决策时,boosting模型挑选出了哪些因子,如图,横轴为时间,纵轴是因子,白点代表的是当月挑选出的因子。原创 2024-01-04 22:14:10 · 1212 阅读 · 0 评论 -
北大经院工作坊第166场 | 学术论文与量化研究实践 (计量、金融和大数据工作坊)-原人民大学教授童庆
童庆,原中国人民大学商学院教授, 博士生导师,目前从事量化基金投资。复旦大学计算数学本科, 美国埃默里大学金融博士, CFA持有者。原创 2024-01-03 21:42:38 · 1087 阅读 · 2 评论 -
机器学习(非传统统计方法如回归)在量化金融方面有哪些应用?
大部分是使用限价订单(limit order book)的,一些能够得到数据的研究者,开始思考将机器学习的方法应用于限价订单层次的数据上,典型的论文就是今年新晋的ACM fellow,Michael Kearns在ICML06上发表的Reinforcement learning for optimized trade execution 不同于之前的论文,这篇文章试图为历史数据的每一个时间点构建状态(state),这样可以将增强学习的框架应用其中。、SVM的相关论文,会发现不少是做股票预测的。原创 2024-01-03 21:30:49 · 1124 阅读 · 0 评论 -
面试 Quant 时你都有哪些好的面试题来衡量候选人的水平?
这些只是数学工具,这个问题的背后其实希望候选人在牢固掌握这些基本工具的背后,想一想这些数学工具的金融含义。如果一个用bs定价方程的trader过来问你说,他观察到的underlying的历史回报率是u,他能不能把。这样的模型已经存在几十年了,但对于在什么情况下运用这个模型(不只是简单的因为它能很好很简单地。还有一个经典的问题,我个人十分偏爱的问题:为什么定价方程都是抛物线(椭圆)方程,而不是。的quant,或者做strategy的quant)的面试中问题的导向。的r改成u,作为quant的你会怎样回答?原创 2024-01-03 21:23:18 · 523 阅读 · 0 评论 -
A股之锚:RIM模型
在实际的运用中,我们通常使用“512模型”,即在5年的快速增长期人为预测标的股票的盈利情况(EPS),并通过除以当期的每股净资产得到相应的ROE。在我们的平台中,前3年的盈利情况(EPS)通过WIND分析师一致预期得到,第4年和第5年的盈利情况通过假设第2年至第3年的增长率持续从而计算得到。其中为第t期的剩余收益,为第t期的每股收益,r为权益资本成本,为第t-1期每股已投入资本(每股净资产)。其中,表示第t期公司的每股净资产,表示第t期的每股收益,表示第t期每股发放的现金股利,k表示分红率。原创 2024-01-03 00:30:23 · 890 阅读 · 0 评论 -
欧洲(德国)金融量化求职就业一
但是我始终坚信了解这行基本风格是必备软实力,因为一般来说不论什么岗位,必然在拿offer前有类似的why quant问题,如果连最基本的行业信息都不了解的话,有可能在chemistry上不匹配被挂。众所周知,前台中后台完全是不同的模式。除了看岗位性质,也要看你所感兴趣的组的业务,也就是这些买方的客户是谁,钱是养老金还是有钱人的闲钱。说完买方插播几句,要注意的是卖方也有买方岗位, 所以说不是说bank的岗位就一定是卖方。类似B这种很小的买方,初期基本上都是要承担压力的核心岗位,基本不会有中后台的岗位的。原创 2023-11-28 06:31:13 · 1095 阅读 · 0 评论 -
长文预警 | 访谈童庆博士——从量化科研到量化实践!
同时有着丰富的实践经验,曾担任多家大型量化机构的顾问,多次开设了实践型的量化高级课程,自己亲自管理过亿的量化产品,可以说同模式是国内非常少见的,同时兼顾学术背景和实践经验的量化投资。然后通过一些小例子,开始去学会一些量化的回测框架,看懂一些量化的研报,学会复制这个简单的研报,提出一些想法,然后更加深度的去学习。第三个优势,我觉得跟主观投资比起来,量化的逻辑很清楚,就是说主观会比较模糊,你不知道自己是怎么挣到钱,亏钱可能也不太明白,挣了钱也不太明白,复制性和持续性都没有量化这边好。原创 2023-11-18 07:56:30 · 250 阅读 · 0 评论 -
Python Parser 因子计算性能简单测试
actVolumet 表示 t 时刻起的前 lag 笔订单的主动成交量之和;在这里,我们挑选了6个具有代表性的因子,用 Python Parser 进行了实现,并对比DolphinDB Script 和 Python 的实现进行了简单性能测试,为大家提供一些参考。其中 vwapt 表示 t 时刻起的前 lag 笔委托单的委托量加权平均委托价格;,它让用户可以用自己最熟悉的 Python 语法实现计算逻辑,并在 DolphinDB 的计算框架上高效运行,享受到 DolphinDB 高性能和分布式的计算能力。原创 2023-11-13 02:37:15 · 85 阅读 · 0 评论