
分布式计算工具DeepSpeed等
文章平均质量分 60
分布式计算工具DeepSpeed、Colossal AI、Megatron LM、Horovod、
量化交易曾小健(金融号)
曾小健,本博客专注于量化金融/交易,AI大模型等技术驱动的量化研究,传统金融/会计、金融风险管理、商科MBA、商务交流与沟通、领导力、营销、传播理论等;及一点点量子物理、免疫与健康;
背景:计算机博士,英国金融本科,出版书籍多部,多年金融、AI、等相关实战/一线工程师经验。
AI+生成式/通用人工智能技术请移步CSDN:AI生成曾小健
展开
-
Megatron-LM
BioMegatron 具有与 Megatron-LM 相同的网络架构,但在不同的数据集 - PubMed 上进行了预训练,这是一个大型生物医学文本语料库,与原始 Megatron-LM 相比,它在生物医学下游任务中取得了更好的性能。预训练的 Megatron-LM (BERT) 可用于 NeMo/examples/nlp 的大多数 NLP 下游任务。Megatron-LM [NLP-MEGATRON1] 是由 NVIDIA 的应用深度学习研究团队开发的大型、强大的转换器。NeMo 中的模型并行。原创 2023-05-24 04:17:20 · 1140 阅读 · 0 评论 -
Colossal-AI简介
图片来源:分布式系统由多个软件组件组成,在多台机器上运行。例如,传统的数据库运行在一台机器上。随着数据量的爆发式增长,单台机器已经不能为企业提供理想的性能。特别是在双十一这样的网络狂欢节,网络流量会出乎意料的大。为了应对这种压力,现代高性能数据库被设计成在多台机器上运行,它们共同为用户提供高吞吐量和低延迟。分布式系统的一个重要评价指标是可扩展性。例如,当我们在4台机器上运行一个应用程序时,我们自然希望该应用程序的运行速度能提高4倍。然而,由于通信开销和硬件性能的差异,很难实现线性提速。原创 2023-06-08 07:05:33 · 5134 阅读 · 0 评论 -
Colossal AI 并行技术
随着深度学习的发展,对并行训练的需求越来越大。这是因为模型和数据集越来越大,如果我们坚持使用单 GPU 训练,训练过程的等待将会成为一场噩梦。在本节中,我们将对现有的并行训练方法进行简要介绍。如果您想对这篇文章进行补充,欢迎在GitHub论坛上进行讨论。原创 2023-06-08 07:13:32 · 584 阅读 · 0 评论 -
数据并行怎样影响计算效率呢?难道数据并行不是需要每张 GPU,都有大 batch 才能保持高效吗?
中,对可用于数据并行训练的有效通信带宽,具有重要意义。流水线阶段中的每个节点,都可以与其对应的数据并行节点,并行通信,有效的通信带宽与流水线阶段数成正比。通过设置64个并行流水线,有。,与其它流水线并行进行。实际上,在高端 GPU 集群中常见的,完全连接的。的带宽的 64 倍。流水线并行带给数据并行,如此大的有效带宽,使。每张GPU上的有效 batch 大小。,即使在小 batch 下,仍可以。,可以让流水线每个阶段的数据。并行节点之间的独立进行通信。h 情况下,实现高效扩展。跨节点使用流水线并行性。原创 2023-05-19 05:01:59 · 243 阅读 · 1 评论