
量化金融论文
文章平均质量分 89
量化交易曾小健(金融号)
曾小健,本博客专注于量化金融/交易,AI大模型等技术驱动的量化研究,传统金融/会计、金融风险管理、商科MBA、商务交流与沟通、领导力、营销、传播理论等;及一点点量子物理、免疫与健康;
背景:计算机博士,英国金融本科,出版书籍多部,多年金融、AI、等相关实战/一线工程师经验。
AI+生成式/通用人工智能技术请移步CSDN:AI生成曾小健
展开
-
WWW‘24 | 课程学习CL+模仿学习IL用于ETF及商品期货交易
背景:尽管课程学习和模仿学习在机器人领域得到了广泛应用,但在处理高度随机的金融时间序列数据控制任务上的研究却很少。方法:文章通过数据增强实现了课程学习的基础思想,并通过从预言者(oracle)中提取策略来实现模仿学习。发现:研究发现课程学习是提高复杂时间序列控制任务性能的一个新方向。尽管在基线调整中给予了基线优势,但随机种子外样本实证研究和消融研究对课程学习非常有利。另一方面,模仿学习应谨慎使用。原创 2024-05-04 16:49:16 · 736 阅读 · 0 评论 -
ICLR 2024 | FTS-Diffusion: 用于合成具有不规则和尺度不变模式的金融时间序列的生成框架
SISC算法首先通过一个初始化过程来准备候选的聚类中心,然后使用DTW距离来比较候选长度的子序列与聚类中心的距离,从而找到最优的分段。实验结果证实了FTS-Diffusion在合成与观测数据相似的金融时间序列方面的有效性,并为下游任务提供了有用的数据。为了捕捉这些状态的时序动态,论文引入了一个模式演变网络,该网络学习给定当前状态的情况下下一个模式的概率以及相应的持续时间和幅度的缩放因子。编码器将可变长度的序列拉伸成固定长度的表示,而解码器则从固定长度的表示重构出可变长度的序列。,用于模拟金融时间序列中的。原创 2024-04-20 23:23:30 · 1485 阅读 · 0 评论 -
AAAI-24 | EarnHFT:针对高频交易的分层强化学习(RL)框架 附代码实现
路由器的训练使用DDQN算法,但由于代理池中的代理数量仍然很大,EarnHFT利用代理池的先验知识来细化交易中的选择。具体来说,在选择低级代理之前,系统会确保所选模型的初始位置与当前位置相同,从而将可能的低级代理数量减少到m个。,通过复杂的计算机算法或数学模型在极短的时间内下单或取消订单。尽管强化学习算法在传统金融市场的低频交易中取得了杰出成果,但在HFT环境下,由于上述两个挑战,很少有算法能够保持稳健的性能。讨论了在HFT中使用的高频技术指标,以及在量化交易中提出的各种深度强化学习方法。原创 2024-04-20 11:57:03 · 1963 阅读 · 0 评论 -
KDD‘23 | AlphaMix: 高效专家混合框架(MoE)显著提高上证50选股表现
原创 QuantML QuantML 2024-04-18 09:17 上海Content本文提出了一个名为AlphaMix的新型三阶段专家混合(Mixture-of-Experts,MoE)框架,旨在模拟现实世界交易公司中高效的自底向上的交易策略设计工作流程,以进行量化投资。提出了AlphaMix,这是首个针对量化投资的专家混合框架。在真实世界数据上进行了实验,证明了AlphaMix在多个财务标准上显著优于11个现有的最先进基线方法。AlphaMix框架分为三个阶段:利用个性化的市场理解和交易风格来训练多原创 2024-04-20 00:08:44 · 835 阅读 · 0 评论 -
适合低信噪金融数据的DoubleEnsemble算法,夏普比率提升超70%
本文中通过基于学习轨迹的样本重加权和基于洗牌的特征选择,提出了一种稳健有效的集成模型DoubleEnsemble,用于金融市场预测。基于学习轨迹的样本重加权为不同难度的样本分配不同的权重,因此特别适用于高噪声和不规则的市场数据。基于混洗的特征选择可以识别特征对模型的贡献,并为不同的子模型选择重要的和不同的特征。原创 2023-11-07 06:00:32 · 505 阅读 · 0 评论 -
基于动态选择预测器的深度强化学习投资组合模型
其次,模型使用的数据源相对单一,只考虑了股票自身数据,忽略了整。最后,在前两个模块的基础上建立了一种深度强化学习模型模拟真实的交易环。近年来,投资组合管理问题在人工智能领域得到了广泛的研究,但现有的基于深度学习的量化交易。个市场风险对股票的影响。评分,并且根据评分选取适合做多的股票进行投资,中,代理对下一个状态的影响可以忽略不计。以遗忘旧的预测方法为代价来学习新的预测方法。的股票交易环境,提高对不同资产的预测准确性,的研究取得了很大的进展,投资组合管理旨在使。益,而股票价格受到多种因素的影响,因此要实。原创 2023-10-25 06:56:01 · 409 阅读 · 0 评论 -
基 于 FP GA 的 超低 延迟量化金融 计算平 台 研 宄
本文设计并实现一 种基于 FP GA 的 超低延迟量化金融计算平 台 , 主要 内 容如 下 : 第 一 , 针对高频量化交 易 中 的 通信场 景 , 定制 网 络通信 功 能 的 FPGA 硬件实现。实验评估表 明 , UDP 协议 的 最低 穿透时延为 4 6 8 . 4ns , T CP 协议卸 载 引 擎 的 最低 穿透 时延为 4 9 4 . 8 ns , 最大 网 络 带 宽 可达 3 8 . 2 8 Gbp s。, 构 建超低延迟量化金融计算平 台。和 数据解码等功 能。原创 2023-10-25 06:36:06 · 1056 阅读 · 0 评论