
机器学习基础
量化交易曾小健(金融号)
曾小健,本博客专注于量化金融/交易,AI大模型等技术驱动的量化研究,传统金融/会计、金融风险管理、商科MBA、商务交流与沟通、领导力、营销、传播理论等;及一点点量子物理、免疫与健康;
背景:计算机博士,英国金融本科,出版书籍多部,多年金融、AI、等相关实战/一线工程师经验。
AI+生成式/通用人工智能技术请移步CSDN:AI生成曾小健
展开
-
信息量、相对熵(KL散度)、交叉熵
举个例子,如果我们要预测一个公正的硬币的结果,每次抛掷的结果都是无法预测的(正面或反面的概率各为0.5)。也就是说,每次抛掷都会带来。而如果硬币是偏的,比如正面的概率是0.9,那么每次抛掷的结果就比较容易预测,带来的新信息量就小一些。相反,如果一个事件发生的概率很大,甚至接近确定,那么它就不会给我们提供什么新的信息,所以它的信息量就很小。对数函数的性质是,当0 < P(x) < 1时,log(P(x))是负数。,通常在信息论中,我们使用的是以2为底的对数,这样得到的。小的事件更能提供一些新的、未知的信息。原创 2023-06-16 14:49:13 · 316 阅读 · 0 评论 -
Sigmoid激活函数和ReLU激活函数的区别:
在正负饱和区,其梯度都接近于0,导致梯度弥散。原创 2023-06-09 14:21:24 · 265 阅读 · 0 评论