pytorch学习笔记 torchnn.ModuleList

本文介绍了PyTorch中nn.ModuleList和nn.Sequential的功能与用法区别。nn.ModuleList用于存储多个nn.Module子类实例并自动注册其参数;nn.Sequential则为模块提供了一个按顺序排列的容器,自动实现前向传播过程。
摘要由CSDN通过智能技术生成

1 nn.ModuleList原理

nn.ModuleList,它是一个储存不同 module,并自动将每个 module 的 parameters 添加到网络之中的容器。

你可以把任意 nn.Module 的子类 (比如 nn.Conv2d, nn.Linear 之类的) 加到这个 list 里面,方法和 Python 自带的 list 一样,无非是 extend,append 等操作。

但不同于一般的 list,加入到 nn.ModuleList 里面的 module 是会自动注册到整个网络上的,同时 module 的 parameters 也会自动添加到整个网络中。

若使用python的list,则会出问题。

import torch
class net_mod_lst(torch.nn.Module):
    def __init__(self):
        super(net_mod_lst,self).__init__()
        self.modlst=torch.nn.ModuleList([
            torch.nn.Conv2d(1,20,5),
            torch.nn.ReLU(),
            torch.nn.Conv2d(20,64,5)
        ])
        
    def forward(self,x):
        for m in self.modlst:
            x=m(x)
        return x
  
net_mod=net_mod_lst()
print(net_mod)
'''
net_mod_lst(
  (modlst): ModuleList(
    (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
    (1): ReLU()
    (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
  )
)

'''

nn.Sequential与nn.ModuleList的区别

2.1 不同点1

 

nn.Sequential内部实现了forward函数,因此可以不用写forward函数。而nn.ModuleList则没有实现内部forward函数。

 

但如果Sequential是在继承了nn.Module的类中的话,那也要forward函数了

import torch
class net_mod_lst(torch.nn.Module):
    def __init__(self):
        super(net_mod_lst,self).__init__()
        self.seq=torch.nn.Sequential(
            torch.nn.Conv2d(1,20,5),
            torch.nn.ReLU(),
            torch.nn.Conv2d(20,64,5)
        )
        
    def forward(self,x):
        x=self.seq(x)
        return x
  
net_mod=net_mod_lst()
print(net_mod)
'''
net_mod_lst(
  (seq): Sequential(
    (0): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1))
    (1): ReLU()
    (2): Conv2d(20, 64, kernel_size=(5, 5), stride=(1, 1))
  )
)
'''

2.2 不同点2

nn.Sequential可以使用OrderedDict对每层进行命名

pytorch 学习笔记:nn.Sequential构造神经网络_刘文巾的博客-CSDN博客

2.3 不同点3

nn.Sequential里面的模块按照顺序进行排列的,所以必须确保前一个模块的输出大小和下一个模块的输入大小是一致的。

而nn.ModuleList 并没有定义一个网络,它只是将不同的模块储存在一起,这些模块之间并没有什么先后顺序可言。

pytorch 是一个高效的深度学习框架,其中nn.modulelistnn.sequential是常用的模块。这两种模块都可以用于创建深度学习网络,并且能够实现自动求导。nn.sequential 是一个有序的容器,其中每个模块按照传入的顺序依次进行计算。nn.modulelist 是一个无序的容器,其中每个模块都可以以列表的形式存储,且没有特定的计算顺序。 nn.sequential 模块的优点是简单易用,并且可以通过一行代码构建和训练网络。例如,要创建一个简单的两层全连接神经网络,可以如下代码实现: ``` model = nn.Sequential(nn.Linear(784, 64), nn.ReLU(), nn.Linear(64, 10), nn.Softmax(dim=1)) ``` 这会定义一个两个全连接层网络以及 ReLU 和softmax 激活函数,输入大小为 784(MNIST 图像大小) ,输出大小为 10(10 个数字)。 nn.modulelist 是一个更加灵活的容器,可以在其中添加任意的子模块。要使用 nn.modulelist,需要先创建一个空的 nn.modulelist,然后手动向其中添加子模块。例如,可以这样创建一个相同的两层全连接网络: ``` model = nn.ModuleList([ nn.Linear(784, 64), nn.ReLU(), nn.Linear(64, 10), nn.Softmax(dim=1) ]) ``` 需要注意的是,nn.modulelist 中的子模块顺序可能会影响计算结果,因为没有特定的训练顺序。因此,在使用 nn.modulelist 时应该尽量保证顺序的准确性。 综上所述,nn.sequential 和 nn.modulelist 都是常用的容器,用于组织神经网络中的子模块,它们在不同场景下具有各自的优势。在简单的前向计算中,nn.sequential 更加容易使用;在需要更好的灵活性时,nn.modulelist 可以更好地实现目标。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值