pytorch学习:xavier分布和kaiming分布

1 函数的增益值

torch.nn.init.calculate_gain(nonlinearity, param=None)提供了对非线性函数增益值的计算。

增益值gain是一个比例值,来调控输入数量级和输出数量级之间的关系。

常见的非线性函数的增益值(gain)有:

 2 fan_in和fan_out

 以下是pytorch计算fan_in和fan_out的源码

def _calculate_fan_in_and_fan_out(tensor):
    dimensions = tensor.ndimension()
    if dimensions < 2:
        raise ValueError("Fan in and fan out can not be computed 
        for tensor with fewer than 2 dimensions")
    #如果tensor的维度小于两维,那么报错

    if dimensions == 2:  # Linear
        fan_in = tensor.size(1)
        fan_out = tensor.size(0)
    else:
        num_input_fmaps = tensor.size(1)
        num_output_fmaps = tensor.size(0)
        receptive_field_size = 1

        if tensor.dim() > 2:
            receptive_field_size = tensor[0][0].numel()
        #tensor[0][0].numel():tensor[0][0]元素的个数

        fan_in = num_input_fmaps * receptive_field_size
        fan_out = num_output_fmaps * receptive_field_size

    return fan_in, fan_out
  • 对于全连接层,fan_in是输入维度,fan_out是输出维度;
  • 对于卷积层,设其维度为[C_{out},C_{in},H,W],其中H × W为kernel规模。则fan_in是H\times W\times C_{in},fan_out是H\times W\times C_{out}

3 Xavier初始化

        xavier初始化可以使得输入值x的方差和经过网络层后的输出值y的方差一致。

其目的是使得每层网络的输入和输出的方差保持一致,从而有效地避免梯度消失或爆炸问题。

3.1 xavier均匀分布

torch.nn.init.xavier_uniform_(
    tensor,
    gain=1)

 填充一个tensor,使得这个tensor满足\mathcal{U}(-a,a)

其中

import torch
w = torch.empty(3, 5)
torch.nn.init.xavier_uniform_(w, 
                        gain=torch.nn.init.calculate_gain('relu'))
w
'''
tensor([[-0.3435, -0.4432,  0.1063,  0.6324,  0.3240],
        [ 0.6966,  0.6453, -1.0706, -0.9017, -1.0325],
        [ 1.2083,  0.5733,  0.7945, -0.6761, -0.9595]])
'''

 3.2 xavier正态分布

torch.nn.init.xavier_normal_(
    tensor, 
    gain=1)

填充一个tensor,使得这个tensor满足\mathcal{N}(0,std)
其中,std满足

import torch
w = torch.empty(3, 5)
torch.nn.init.xavier_normal_(w, 
                        gain=torch.nn.init.calculate_gain('relu'))
w
'''
tensor([[ 0.2522, -1.3404, -0.7371, -0.0280, -0.9147],
        [-0.1330, -1.4434, -0.2913, -0.1084, -0.9338],
        [ 0.8631,  0.1877,  0.8003, -0.0865,  0.9891]])
'''

4 Kaiming 分布

        Xavier在tanh中表现的很好,但在Relu激活函数中表现的很差,所何凯明提出了针对于relu的初始化方法。

        pytorch默认使用kaiming正态分布初始化卷积层参数。      

4.1 kaiming均匀分布  

torch.nn.init.kaiming_uniform_(
    tensor, 
    a=0, 
    mode='fan_in', 
    nonlinearity='leaky_relu')

填充一个tensor,使得这个tensor满足U(−bound,bound)

 其中,bound满足

a

激活函数的负斜率(对于leaky_relu来说)

如果激活函数是relu的话,a为0

mode

默认为fan_in模式,可以设置为fan_out模式

fan_in可以保持前向传播的权重方差的数量级,fan_out可以保持反向传播的权重方差的数量级

import torch
w = torch.empty(3, 5)
torch.nn.init.kaiming_uniform_(
    w, 
    mode='fan_in', 
    nonlinearity='relu')

'''
tensor([[ 0.8828,  0.0301,  0.9511, -0.0795, -0.9353],
        [ 1.0642,  0.8425,  0.1968,  0.9409, -0.7710],
        [ 0.3363,  0.9057, -0.1552,  0.5057,  1.0035]])
'''


import torch
w = torch.empty(3, 5)
torch.nn.init.kaiming_uniform_(
    w, 
    mode='fan_out', 
    nonlinearity='relu')
w
'''
tensor([[-0.0280, -0.5491, -0.4809, -0.3452, -1.1690],
        [-1.1383,  0.6948, -0.3656,  0.8951, -0.3688],
        [ 0.4570, -0.5588, -1.0084, -0.8209,  1.1934]])
'''

 4.2 kaiming正态分布

torch.nn.init.kaiming_normal_(
    tensor, 
    a=0, 
    mode='fan_in', 
    nonlinearity='leaky_relu')

参数的意义同4.1 kaiming均匀分布

填充一个tensor,使得这个tensor满足\mathcal{N}(0,std)
其中,std满足

import torch
w = torch.empty(3, 5)
torch.nn.init.kaiming_normal_(
    w, 
    mode='fan_out', 
    nonlinearity='relu')
w
'''
tensor([[ 0.9705,  1.6935, -0.4261,  1.1065,  1.0238],
        [-0.3599, -0.8007,  1.3687,  0.1199,  0.4077],
        [ 0.5240, -0.5721, -0.2794,  0.3618, -1.1206]])
'''

### PyTorchXavier 初始化的使用与实现 #### 什么是 Xavier 初始化? Xavier 初始化是一种用于神经网络权重初始化的方法,旨在解决深层前馈神经网络训练困难的问题。该方法通过控制权重初始值的范围来保持信号在网络层间的传播稳定性[^1]。 #### Xavier 初始化的核心思想 Xavier 初始化假设输入 \( X \) 输出 \( H_1 \) 的方差相同。为了满足这一条件,权重矩阵的初始化应遵循特定的标准差计算方式。具体而言,对于均匀分布正态分布两种情况: - **均匀分布**:\( W \sim U\left(-\sqrt{\frac{1}{n}}, \sqrt{\frac{1}{n}}\right) \),其中 \( n \) 是输入单元的数量。 - **正态分布**:\( W \sim N(0, \sqrt{\frac{2}{n_{in} + n_{out}}}) \),其中 \( n_{in} \) \( n_{out} \) 分别表示输入输出单元数量[^2]。 #### 在 PyTorch 中如何使用 Xavier 初始化? PyTorch 提供了 `torch.nn.init` 模块,可以直接应用 Xavier 初始化到模型参数上。以下是具体的代码示例: ```python import torch import torch.nn as nn import torch.nn.init as init class SimpleModel(nn.Module): def __init__(self): super(SimpleModel, self).__init__() self.fc = nn.Linear(in_features=100, out_features=50) def forward(self, x): return self.fc(x) model = SimpleModel() # 应用 Xavier 均匀分布初始化 init.xavier_uniform_(model.fc.weight) print("Xavier Uniform Initialized Weights:") print(model.fc.weight.data) # 或者应用 Xavier 正态分布初始化 init.xavier_normal_(model.fc.weight) print("\nXavier Normal Initialized Weights:") print(model.fc.weight.data) ``` 上述代码展示了如何对线性层(`nn.Linear`)的权重进行 Xavier 初始化。需要注意的是,在实际项目中可以遍历整个模型的所有模块并对其参数逐一初始化[^3]。 #### 自动化批量初始化 如果希望自动为所有线性层或其他类型的层设置 Xavier 初始化,可以通过重写模型类中的 `reset_parameters()` 方法或者利用递归函数完成: ```python def weights_init(m): if isinstance(m, nn.Linear): # 只针对全连接层 init.xavier_uniform_(m.weight) if m.bias is not None: init.zeros_(m.bias) model.apply(weights_init) ``` 这段代码片段定义了一个通用的权重初始化函数,并将其应用于模型的所有子模块。 #### 性能对比与其他初始化方法的关系 尽管 Xavier 初始化适用于激活函数为 Sigmoid 或 Tanh 的场景,但对于 ReLU 类型的激活函数,Kaiming (He) 初始化可能表现更优[^4]。这是因为 Kaiming 初始化特别考虑到了 ReLU 的非零梯度特性,从而进一步提升了模型收敛速度。 --- ###
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值