论文笔记:Multitask Learning and GCN-Based Taxi Demand Prediction for a Traffic Road Network

该模型结合了图卷积网络(GCN)、长短期记忆网络(LSTM)和多任务学习,针对路段车流量预测。基于西安的实际出租车轨迹数据,模型通过学习历史时间段的图特征,预测下一个时间步的上下客车流量。实验结果显示其在交通预测上的有效性,并进行了消融实验以验证各组件的作用。
摘要由CSDN通过智能技术生成

2020 Sensor

空域GNN+LSTM+multitask

1 模型

1.1 基本框架

1.2 模型网络

  • 记路段数量为R,历史时间段数量为K
    • 图的特征矩阵X维度为K*R
    • 邻接矩阵维度为R*R
  • 经过GCN+GLU+BN之后,输出的维度为K*R
  • 经过LSTM,输出的维度为1*R
  • 全局关系图和局部关系图各能够获得一个LSTM的输出
    • 将两个变量进行拼接(2*R),接入二维卷积中,得到一个1*R的矩阵,就是输出结果(下一个时间步各路段上车/下车的车流量)
  • multi-task体现在损失函数上
    •  
      •  其中loss_{in}, loss_{out}分别表示上客和下客的车流量

        •  

           

2 实验 

2.1 数据

来自西安的真实出租车轨迹。这些轨迹来自1万多辆出租车,覆盖了2万个路段

2.2 结果

 2.3 消融实验

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值