2020 Sensor
空域GNN+LSTM+multitask
1 模型
1.1 基本框架
1.2 模型网络
- 记路段数量为R,历史时间段数量为K
- 图的特征矩阵X维度为K*R
- 邻接矩阵维度为R*R
- 经过GCN+GLU+BN之后,输出的维度为K*R
- 经过LSTM,输出的维度为1*R
- 全局关系图和局部关系图各能够获得一个LSTM的输出
- 将两个变量进行拼接(2*R),接入二维卷积中,得到一个1*R的矩阵,就是输出结果(下一个时间步各路段上车/下车的车流量)
- multi-task体现在损失函数上
-
-
其中分别表示上客和下客的车流量
-
-
-
2 实验
2.1 数据
来自西安的真实出租车轨迹。这些轨迹来自1万多辆出租车,覆盖了2万个路段
2.2 结果
2.3 消融实验