ACL 2015
1 Intro
1.1 背景
- LSTM 能够处理序列信息,但是无法处理带有树结构的数据
- 依存句法分析树 (Dependency Tree)
- 成分句法分析树 (Constituency Tree)
- 依存句法分析树 (Dependency Tree)
1.2 论文思路
- 为了解决将树结构的数据作为输入训练 RNN 的问题,论文中提出了两种结构的 Tree-Structured LSTM:
-
Child-Sum Tree-LSTMs (Dependency Tree-LSTMs)
适用于子节点个数不定或者子节点乱序的树结构。
-
N-ary Tree-LSTM (Constituency Tree-LSTMs)
适用于每个单元的子单元的个数最多是 N,且子单元之间是有序的。
-
2 方法
2.1 Child-Sum Tree-LSTMs (dependency tree)
给定树且令 C(j)表示节点 j 的子节点集合,那么 Child-Sum Tree-LSTMs 的计算公式为:
- 与标准 LSTM 结构类似,Tree-LSTM 中每个 cell 都包括类似的输入门 i ,输出门o ,cell state c 和隐层输出 h。
- 不同的地方是:
-
LSTM 中只用到了上一步神经元的隐藏输出 ,而 Tree-LSTM 用到了所有子节点的隐藏输出 。
-
Tree-LSTM 使用了多个遗忘门 来控制多个子节点的 cell state candidate ck
-
——>可以选择性地从子节点中获取信息,例如在情感分析任务中去保存语义信息更加丰富的子节点的信息
-
-