1 intro
- 下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。
- NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理
- NL 问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。
- 然而,这些方法并不具备地理转移能力
- 因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降
- 尽管已经做出努力改善地理转移性,但主要的进展还是与集体移动模式相关,而零样本的地理独立性仍未得到解决
- 此外,已经显示出大型语言模型(LLMs)嵌入了空间和地理知识,并且这些知识可以被有效提取
- ——>探索将 LLMs 作为零样本下一个地点预测器的使用
- 评估了四个 LLMs 的性能:Llama2、Llama2 Chat、GPT-3.5和 Mistral
- 同时讨论了其他一些 LLMs、Phi-2、Phi-3、Gemma、GPT-J、Dolly的一些限制
2 preliminary
2.1 任务定义
- 下一个地点预测通常定义为根据个体的历史移动轨迹预测其下一个将访问的地点的问题,这些轨迹通常表示为时空轨迹
- (轨迹)时空点 p = (t, l) 是一个元组,其中 t 表示时间戳,l 表示地理位置。轨迹 P = p1, p2, ..., pn 是个体访问的 n 个时空点的时间有序序列
- 根据 DeepMove的方法筛选轨迹
- 筛选出记录少于 10 条
- 根据 DeepMove的方法筛选轨迹
- (轨迹)时空点 p = (t, l) 是一个元组,其中 t 表示时间戳,l 表示地理位置。轨迹 P = p1, p2, ..., pn 是个体访问的 n 个时空点的时间有序序列