如下图所示,Instant3D可在20s内快速生成高质量3D模型。LRM仅使用单图作为重建输入。本文提出使用Multi-view Diffusion Model得到四个视角图片,在image encoder中编码四个视角图片,concat在一起后送入后续的image-to-triplane decoder网络。
方法
本文方法包含两个部分:1)通过multi-view diffusion model生成多视角图片;2)通过重建模型生成对应的3D目标。
Text-conditioned Sparse View Generation
- Instant3D基于Objaverse数据集fine-tune了SDXL模型。给定文本,该模型生成该文本对应的四个角度图像(一张图片中包含2 x 2的多视角图片)。
- Multi-view data creation and curation。
- 数据准备:对Objaverse中750K物体渲染4个512 x 512,elevation固定在20度,azimuths是0, 90, 180, 279。使用Cap3D为每个3D物体生成captions;
- 存在问题:使用所有数据fine-tune,会减弱生成图像的真实感。
- 解决方案:筛选top-10k最好数据用于训练。人工标注2000个数据,基于CLIP特征的SVM,训练一个scorer,用于评价3D物体的好坏。
- Inference with Gaussian blob initialization
- 存在问题:生成图像存在复杂背景,影响后续重建质量。
- 解决方案:2D Gaussian blob,图片中心初始化标准差为0.1的高斯噪声,使得生成图像的背景为白色。
- 使用32卡A100训练3小时
Feed-Forward Sparse-View Large Reconstruction Model
- 与LRM类似,包含Image encoder、Image-to-triplane decoder和triplane-NeRF。
- 在Image Encoder中使用AdaLN嵌入输入图像对应的相机参数。最终得到的2D image tokens合并在一起,在Image-to-triplane decoder的cross-attention中嵌入。
- 使用全部Objaverse dataset
实验
在A100上,推理仅需20s,相较于DreamFusion所需1.5小时,ProlificDreamer所需10小时,速度提高了279倍和1800倍。
消融实验