目 录
摘要 I
目 录 IV
- 绪论 1
1.1. 研究背景 1
1.2. 机器人国内外技术发展现状 2
1.2.1. 国外机器人的发展现状 2
1.2.2. 国内机器人的发展现状 3
1.3. 轮式移动机器人的轨迹跟踪研究现状 4
1.3.1. 轮式移动机器人的运动控制分类 4
1.3.2. 轮式移动机器人的轨迹跟踪控制简介 4
1.3.3. 轮式移动机器人轨迹跟踪控制的发展现状 6
1.4. 自适应轨迹跟踪控制的研究现状 8 - 基础知识 9
2.1. 非完整轮式移动机器人的数学模型 9
2.1.1. 运动学数学模型 10
2.1.2. 动力学数学模型 12
2.2. 滑模变结构控制 14
2.3. 自适应控制技术 15
2.4. 基于扰动观测器控制 17
2.5. 稳定性相关理论 17 - 基于移动机器人运动学的级联轨迹跟踪控制 18
3.1. 引言 18
3.2. 问题描述 19
3.3. 控制器设计 21
3.3.1. 运动学控制器设计 21
3.3.2. 虚拟速度控制器设计 22
3.4. 数值仿真 23
3.5. 本章小结 25 - 基于参数在线辨识的移动机器人自适应轨迹跟踪控制 25
4.1. 引言 25
4.2. 问题描述 27
4.3. 控制器设计 28
4.4. 数值仿真 30
4.5. 本章小结事 31 - 总结与展望 31
5.1. 总结 31
5.2. 展望 32
参考文献 33
致谢 37
1.绪论
1.1.研究背景
机器人的出现标志着二十世纪人类对世界的巨大改变,它的进步反映了一个国家在工业生产和科技领域的实力。自上个世纪初以来,由于科学技术不断取得新成就,使得机器人技术也获得快速发展。在二十一世纪全球化快速发展的背景下,多民族的融合、技术的交流和创新推动了机器人技术的日益成熟,并释放出了前所未见的巨大潜力。同时,机器人技术已经被应用到社会生活的方方面面,成为人们日常生活不可或缺的一部分。伴随着科技的不断发展,机器人技术已经超越了传统工业制造的界限,众多新兴技术如通信、微电子、传感器、人工智能和计算机技术等都开始与机器人技术相结合,实现相互融合和共同进步。目前,我国已经进入了全面建设小康社会的新时期,各行各业都迎来了快速发展机遇,机器人技术作为其中一项重要组成部分,将对社会经济发展产生巨大影响。从国家的发展策略视角看,机器人技术的快速进步为国家的智能化进程注入了巨大的活力,这也代表了一个国家在科技方面的强大实力。
目前,轮式移动机器人(Wheeled mobile robot WMR)的研究焦点主要集中在机器人运动控制算法上,这是因为高质量的控制算法能确保机器人能够持续、高效和安全地运行。随着科学技术的不断发展,人们越来越重视算法在智能控制中的应用。然而,如何构建高效的机器人控制算法,这一问题也引发了众多学术研究人员的深入思考。
无论是国内还是国外,机器人的控制算法主要聚焦于三个核心方向:运动学控制算法、动力学控制算法以及结合机器人运动学和动力学的控制算法。其中,机器人运动学算法是指利用解析法求解关节空间轨迹和位姿方程来获得相应的末端执行器位置或速度等信息。在机器人的运动学控制算法中,机器人被视为一个理想状态下的刚体,该算法主要关注解决机器人在不完全约束条件下的运动问题;然而,在实际应用中,机器人作为一个具有多变量、高度耦合和参数时变特性的非线性系统,仅仅关注其运动状态是不足以满足控制需求的。动力学是研究机器人控制系统稳定性及性能的重要手段之一,但其理论模型复杂且不完善。因此,对机器人的动力学特性进行分析并设计相应的动力学控制算法变得尤为重要。对于多自由度机械臂来说,其结构相对简单,能够很好地适应实际工况条件。尽管动力学控制算法是独立设计的,但在某些情况下,机器人仍然难以达到所需的精度标准。结合运动学和动力学的运动学-动力学控制方法在处理某些机器人的运动控制问题时展现出了显著的优势。随着计算机技术和微电子技术的不断发展,机器人控制技术已经取得了长足的进步。然而,还存在其他一些问题,例如机器人在复杂环境中移动时,由于地面湿滑、外界强干扰等因素,导致机器人移动时出现车体滑移、车心“失稳”等现象,严重时机器人失控、难以跟踪预定轨迹,这些不可预知的因素对机器人的运动产生了极大的影响。因此,必须考虑到环境因素及系统模型不确定性的情况下如何保证机器人准确稳定跟踪指定路径。另外,由于机器人固有的非线性属性(例如高柔度、库仑摩擦力等),研究人员在进行精确的数学建模时遇到了困难。这些非线性特性不可避免地会导致参数测量误差(例如车轮半径和转动惯量)对机器人的跟踪性能产生一定的负面影响,从而妨碍了机器人跟踪的准确性。另外,对于具有未知输入和不确定外部扰动的系统而言,如何保证控制效果以及提高控制精度成为当前研究领域面临的难题之一。为了针对上述提到的问题提供解决方案,我们在本文中进行了深入的探讨。
1.2.机器人国内外技术发展现状
国外机器人的发展现状
任何科技的诞生和进步都是建立在社会需求的基础之上的。机器人的诞生和应用正是在这样一个背景下发生的。在上世纪的二、三十年代,美国、英国、苏联等先进国家面临着劳动力短缺的问题。为了提升生产效益,汽车制造巨头如通用汽车公司和福特公司开始采用机器人进行铸造、组装、加工、运输和零部件装卸等多种操作。当时,这些先进的技术还只是停留在实验室阶段。在1965年,随着技术条件逐渐完善,美国麻省理工学院成为首家成功研发出具备感知和识别功能的感知型机器人的机构。此后,美国、日本、德国等国家相继开发和应用了各类不同类型的智能机器人。在20世纪80年代初期,美国通用汽车公司开始为工业级机器人装配视觉系统。此后,机器人在军事领域得到广泛应用。接着,美国国家航空航天局(NASA)成功研发了火星探测车(MER)。这款探测车能够通过追踪两组256256́立体图像,自主选择地形特征来完成移动任务,同时还能计算出漫游者在不同自由度(x、y、z、横摇、俯仰、偏航)下的姿态变化。此后,美国、英国、德国等国开始研究和发展基于机器视觉的机器人控制系统。在20世纪90年代,随着计算机技术的崛起,人工智能和神经网络被纳入机器人系统的开发,使得机器人获得了逻辑推断的能力。在此基础上,世界各国开始研发智能机器人和无人驾驶汽车。在二十一世纪,日本开发的农业采摘机器人利用机械手臂、三维视觉传感器、末端执行机构和压力传感器等组件,共同完成了农作物的采摘任务。目前我国已经研发出能在复杂环境下实现稳定行进并准确定位的轮式移动机器人。在2009年,美国伍兹霍尔海洋研究所采用了路径规划和地图绘制等先进技术,成功地开发出了名为“海神号”的海底探测机器人。这些都表明未来机器人技术发展方向将是智能化和人性化。国防高级研究计划署的机器人挑战赛(DRC)推出了名为Drc-hubo+的人形机器人平台,该平台通过其双膝上的轮子实现了从双足行走模式向车轮模式的转变。
国内机器人的发展现状
起初,我国对于机器人的了解和应用主要集中在使用程控机械手进行简单的重复操作上。在20世纪80年代的中后段,国内知名的大学和研究机构开始专注于机器人的性能和功能研究,并成功开发了如智能轮椅、变形机器人和复合式结构机器人等产品。其中以北京交通学院研制成功的可在道路中自动行走且具有避障能力的机器人为代表。中科院自动化所成功开发了一款名为“CASIA-I”的机器人,它整合了传感器、视觉和语音识别与会话的功能,能够独立地避开障碍并寻找最优路径。该款机器人能在无人帮助下安全地到达指定地点。在2006年,国防科技大学成功研发了名为“红旗HQ3”的无人驾驶车,该车在高速公路上能够实现无人驾驶和变线超车的功能”。上交大研究所对机器人的控制精度进行了深入的研究,并成功开发了一款具有高控制精度的腿足式移动机器人。这款机器人能够步行到达四十度的楼梯,并能垂直越过0.3米的障碍物。中科院计算所则研发出基于神经网络算法的智能避障系统,使其能够根据外界环境自动调整自身位置以达到更好地规避障碍效果。接着,中科大成功地将轮式机器人与腿式机器人融合,研发出了名为“HyTRo-I”的设备,该设备能够灵活地在腿式、轮式和混合式三种不同的运动模式之间进行切换。此外还研发出一种新型结构——双关节型机器人,其具有结构紧凑、体积小、重量轻等优点。近年来,由于国内机器人研究的持续加强和多个科研团队的不断创新,机器人技术取得了显著进展,特别是在轮式和腿式移动机器人方面,展现出了旺盛的生命力。其中,轮式移动平台作为一种典型的轮式移动机器人类型,其主要应用于军事侦察等领域,具有结构简单紧凑,操作方便可靠,便于携带等优点。接下来的图1-1展示了几种常见的轮式移动机器人。
图1-1 几种常见的轮式移动机器人
1.3.轮式移动机器人的轨迹跟踪研究现状
轮式移动机器人的运动控制分类
轮式移动机器人的动作控制主要可以划分为三大类:点镇定、路径的规划以及轨迹的追踪。
(1)所谓的点镇定(Point stabilization),意味着控制系统可以在有限的时间里达到一个预期的稳定状态,并保持这一状态不变。对于特定的移动机器人,我们可以通过制定恰当的控制策略,将机器人从一个初始位置驱动到任意的目标位置,并确保其在那里保持稳定。
(2)路径规划(Path planning)定义为被控制的系统根据特定的性能标准,在其所处的环境中寻找或设计出一条起始于初始位置并带有特定运动目标的最佳或次佳路径[28]。例如,在美国火星探测器上使用的Dynamic A路径规划算法(也被称为D算法),它通过持续的搜索来逼近目标地点,从而确定下一个行动序列并最终到达预定位置。
(3)轨迹跟踪,也被称为Trajectory tracking,描述的是机器人从一个特定的起始姿态开始,按照预先设定的轨迹移动,直到达到预定的终点并结束其动作的全过程。这种期望的轨迹通常是一个与时间相关的几何图形。为了进行轨迹追踪,移动机器人的移动速度必须不低于零。
这三种方法的核心差异在于:点镇定方法主张稳定在某一特定状态点;路径规划侧重于寻找最佳或次佳的路径,但并不强调系统变量与时间之间的联系;而轨迹跟踪则强调控制系统的变量、预期轨迹与时间之间的严格联系。在实际应用中,这三种控制方式往往相互独立使用或结合使用。因此,与其他两者相比,轨迹跟踪的过程更加复杂,这更值得我们进行深入的研究。
轮式移动机器人的轨迹跟踪控制简介
在轮式移动机器人的轨迹追踪过程中,机器人的参考路径在数学上呈现为一个随时间演变的曲线方程,其中时间是主导参考路径的关键因素。因此,机器人在执行轨迹追踪任务时,必须要对其进行实时计算以保证参考轨迹满足运动要求。通常,在执行跟踪任务之前,机器人需要事先确定需要追踪的参考轨迹方程,这个参考轨迹既可以作为机器人的追踪目标,也可以被视为具有实际移动目的的虚拟机器人。通过对虚拟机器人与机器人系统之间运动关系分析和运动学建模研究,建立了一个基于动力学模型的机器人实时跟踪算法,并给出了实现方法及仿真实验结果。在机器人的整体轨迹追踪移动中,真实的机器人会跟随虚拟机器人的移动轨迹。
图1.2 移动机器人轨迹跟踪示意图
如图1.2展示的那样,机器人的完整轨迹追踪过程可以描述为:从t1的时刻起,机器人开始执行初始的姿态
从(x1, y1)位置开始,随着时间的流逝,在ti时刻抵达(x i, yi)的位置,tn时刻抵达(x n,yn)的位置,最后达到追踪目标的终点。对于该问题,提出了一种基于非线性规划方法来解决。值得一提的是,机器人的初始实际位置并不需要与其预期的初始位置完全匹配,这意味着机器人可以在非预期轨迹的位姿点启动。仿真结果表明,当系统具有一定精度时,此算法可以达到预期的性能。只要机器人的跟踪状态能在规定的有效跟踪时间内从最初的偏离预期姿态逐步接近,直到最终达到预定的目标姿态,并且两者完全对齐,这就意味着跟踪任务已经成功完成一次,相应的控制系统算法也是有效的。在整个轨迹过程中,如果真实轨迹与预期轨迹的匹配度更高,那么速度误差的收敛速度也会更快,从而提高机器人的控制精度和跟踪效果。
如图1.2所示,机器人的整个轨迹跟踪过程表现为:机器人从t1时刻开始,从起始位姿
(x1,y1)处出发,随时间的推移,于ti时刻到达(x i,yi) 位姿处,tn时刻到达(x n,yn)位姿处,最终到达跟踪目标终点。其中需要注意的是,不要求机器人的起始实际位姿与起始期望位姿重合,即机器人可在非期望轨迹的位姿点处出发。只要满足在有效跟踪时间内,机器人的跟踪状态从原始偏离期望位姿到逐渐逼近期望位姿,直至最终到达期望位姿,实现二者的完全重合,就表示跟踪任务成功一次,对应控制系统的控制算法有效。整条行径过程中,真实轨迹与期望轨迹的重合程度越好,速度误差收敛越快,机器人的控制精度就越高,跟踪效果越好。
轮式移动机器人轨迹跟踪控制的发展现状
WMR是一种固有的非线性非完整动态系统,它通常包含未建模的扰动和非结构化、未建模的动态。针对这一问题提出了一种自适应滑模控制方法来解决这类复杂系统的跟踪与稳定控制问题。由于其高度的耦合性、参数的时变性和非线性特点,以及不满足Brockett光滑镇定条件,控制系统的设计过程变得异常复杂。
在机器人轨迹跟踪控制算法的初步研究阶段,科研人员主要集中在机器人运动过程的分析、运动学模型的构建以及运动学控制器的设计上,但却未能充分地考虑到机器人在运动过程中可能面临的受力和未知的干扰因素。随着计算机控制技术和人工智能技术的发展,人们逐渐认识到,在实际应用时,机器人必须要考虑外界因素对其运动状态的影响,这也是实现机器人自主导航与操作所必需具备的能力之一。Yang和其他一群专注于研究机器人动力学控制器的专家们,为了使机器人的运动更接近实际情况,致力于研究机器人在受到外力和干扰时的跟踪算法,并已经取得了一定的成就。这些研究成果在一定程度上为实现复杂环境下机器人轨迹跟踪提供了理论基础。然而,当机器人的参数或非参数未知时,机器人运动学控制器并不能有效地进行追踪控制;在系统受到外界扰动时,由于其自身具有不确定性,导致控制系统不稳定。由于机器人的耦合性以及模型中的科氏力、离心力等非线性因素,机器人动力学控制器的控制精度受到了影响。在此背景下,人们开始关注如何提高机器人系统的精度和鲁棒性,从而达到更高精度的跟踪控制效果。为了解决这些问题,目前主流的控制算法包括PID控制算法、滑模变结构控制算法、反演/反步控制算法、鲁棒控制算法以及神经网络控制算法等,这些算法主要以机器人的输出速度和位置姿态作为其控制变量。
PID控制算法作为最具代表性的控制方法,由于其简洁的结构和可靠的工作性能,在机器人控制系统的设计中得到了广泛的应用。在文献[34]里,Sato及其团队深入研究了六轮移动机器人“Zaurus”在崎岖地形中的动作控制,他们提出了一个调谐的单PID控制器,从而提高了机器人对环境的适应性。Ye成功地将传统的PID技术与神经网络相结合,赋予了机器人连续学习和处理非线性问题的能力,有效地抑制了扰动的不确定性和非线性,从而实现了对机器人速度和方向的全面跟踪控制[35]。
在机器人的非线性系统中,滑模变结构算法展现出了最佳的应用效果。本文采用积分滑模型作为其数学模型。由于滑模控制器具有出色的能力来应对系统参数的变动和减少外部干扰,这大大加快了机器人的即时反应速度。在文献[37]里,Kchaou成功地将积分滑模曲面与自适应观测器融合,从而设计了一个输出反馈滑模控制器,有效地降低了闭环控制系统对外部扰动的敏感度。本文提出一种新型趋近律方法用于求解一类具有时变不确定性且有外部扰动输入的动力学模型,以保证闭环系统渐近稳定。根据文献[38]的描述,Mauder在极坐标系统中为非完整的移动机器人设计了滑模控制器,这使得机器人能够追踪任意的参考路径并减少了系统的有界干扰。
反演控制算法主要针对控制系统中存在的参数不确定性问题进行解决,通过采用从前到后的递推策略,将控制系统划分为多个子系统,并分别通过确保子系统的稳定性来确保整体系统的稳定性[42]。该算法不需要被控对象精确数学模型,也不用考虑控制量之间的约束关系和反馈回路的传递函数,因此在实际工程应用中有很大优势。Zohar及其团队采用了反演方法来设计在增广模型中的轮式移动机器人的轨迹追踪控制器,确保了机器人的轨迹能够指数级地收敛[43]。
鲁棒控制算法是近年来新兴的一种用于解决机器人复杂系统中模型未知问题的控制算法,主要包括H∞控制法、Kharitonov区间法、μ法等。在实际应用过程中,为了获得更好的效果,需要根据被控对象参数或外部干扰来确定控制器增益矩阵的上界,从而实现鲁棒镇定控制。考虑到轮式移动机器人在轨迹跟踪过程中建模的不确定性,Chen及其团队提出了一个非线性的鲁棒控制策略,成功地克服了这种不确定性带来的挑战[46]。在文献[47]里,Shojaei及其团队设计了一种自适应鲁棒控制器,该控制器能够对摩擦、扰动以及未建模的动力学不确定性的上边界函数进行未知常数的估计,从而消除了WMR不确定性的影响。
与此同时,像模糊控制[49]和神经网络控制[50]这样的智能控制算法,由于其出色的学习和推理能力,已经成为处理高度非线性系统的强大手段。在机器人运动学建模中常用到动力学方程来描述关节变量随时间变化的关系。Jetto及其团队成功地将模糊控制法与自适应控制法融合,为机器人在未知模型条件下的长路径追踪问题提供了解决方案[51]。Raimondi提出了一种动态模糊控制算法,该算法考虑了机器人驱动器的摩擦和外部扰动,通过模糊推理机制获取动态控制律的附加自适应项,从而对扰动进行补偿[52]。
1.4.自适应轨迹跟踪控制的研究现状
上述的控制算法成功地对机器人的输出速度和位置姿态进行了高效管理,从而显著提高了系统的整体性能。本文最后总结了论文所取得的研究成果,并指出了研究工作存在的不足及进一步改进的方向。然而,在这些算法中,大部分都要求在控制器设计完成后,机器人的控制参数必须保持不变。为了克服上述缺点,提出了一种基于自适应性理论的自适应控制方法。在进行深度研究的过程中,科学家们发现自适应控制算法能够通过设计自适应规律来动态地完成参数的整定,从而有效地解决了由于机器人结构参数未知、扰动项未知和动态特性随时间变化等因素导致的机器人性能问题。因此本文提出了基于自适应控制的智能避障控制系统设计方案。在环境条件发生显著变化的情况下,系统能够迅速进行修正,从而增强了其对干扰的抵抗力和鲁棒性,同时也提高了控制的精确度。
在航天领域,自适应控制策略首次被提出并得到了应用。随着现代飞行器研究技术的不断发展,人们逐渐将其运用到航空、航海等许多民用或军事领域。鉴于飞机飞行的独特性质,飞机在不同的飞行高度和速度条件下,其动力学参数需要在较大的范围内进行调整,并确保其始终保持稳定状态。因此,需要一种能实时改变控制目标函数以达到预定状态或使系统性能最优的方法,即所谓“动态逆”控制策略。在二十世纪五十年代的尾声,Whitaker教授在美国麻省理工学院进行了模型参考自适应控制方案的设计和实验,取得了令人欣喜的成果。随后,该技术逐渐推广到工业过程、航空飞行器及船舶航行系统中。随后,由于其出色的适应能力和高度的灵活性,自适应控制算法得到了广泛的应用。随着工业自动化技术不断发展,一些特殊场合需要机器人具有一定自主性,如水下探测、导航与定位及战场态势感知系统中的自主移动设备等等。在机器人面临非完美的约束条件时,由于外部环境的影响,车辆可能会打滑。为此,Yoo及其团队提出了一种自适应控制策略,该策略能够补偿滑移的未知边界,并在极坐标系中对其进行有效控制。Kim和他的团队根据地形特点设计了一种名为牵引-能量平衡自适应控制器(TEB)的设备,该设备通过在线调整滑移律,为机器人车轮提供了最佳的转速,以适应各种地形和表面条件的变化。Li在自适应控制中融合了神经网络技术,利用动作神经网络来逼近机器人的未知模型建模、滑动和伪死区等部分,并设计了相应的自适应规则和神经网络自适应规则,确保机器人在轨迹跟踪时误差能够迅速收敛。
2.基础知识
2.1.非完整轮式移动机器人的数学模型
首先,我们对非完整的WMR系统进行了深入的分析和模型构建。在此基础上,针对一类具有未知参数的非线性不确定对象,给出一种新的自适应鲁棒控制器设计方案。接下来,我将简洁地阐述一些先进的控制算法和扰动观测器技术,以便为后续章节中轨迹跟踪控制器的设计提供坚实的理论支撑。
从力学角度对系统和约束进行分类,它们可以被划分为“完整”与“非完整”[45]。所谓系统和约束,一般都是指在某一特定空间内具有一定几何形状、功能或物理意义的物体。前者描述的是对系统姿态的某种限制,而后者则是对动作的某种限制。
图2.1展示了一个不完全的WMR模型。在图示中,x-o-y代表了世界的静态坐标空间,而X-Pc-Y则是与WMR相结合形成的连体坐标空间。P0代表的是几何中心,而Pc则代表整个系统的质心,d则是系统质心Pc与系统几何中心P0之间的实际距离。由于左、右两个轮子分别位于不同平面上,所以两轮子相对于水平面倾斜一定角度后仍保持水平状态。a代表机器人的车身长度,r代表左右轮的半径,Y轴的方向与左右轮的中心连线是平行的,并且方向是从右轮指向左轮。在此坐标系下机器人可以看作一刚体来考虑。X轴的方向是从质心Pc开始,指向机器人的移动路径。θ是指系统运动方向上的X轴与τ-o-y中的x之间的角度差。mc代表的是质量,但这并不包括驱动轮及其电机转子的质量。mw代表一个驱动轮及其电机转子的质量,因此机器人的总质量可以表示为m=me+2mw。Ic则表示机器人(不包括驱动轮和电机转子)的绕图(2.1)中的过质心P。对于垂直于XY平面的垂直轴的转动惯量,Im代表每个轮子及其电机转子关于轮子直径的转动惯量,而Iw=2mu(d2+b2)则表示每个轮子及其电机转子关于轮轴的转动惯量。因此,整个系统的总转动惯量可以表示为1=Ic+Iw+2Im。
参考相关文献,我们将系统的广义位姿定义为q=(x ,y,θ,αr,αl)T。在这个定义中,x和y分别代表世界坐标系中x和y的方向坐标,而αr和αl则分别代表右轮和左轮的角位移。
基于位移工和y的数据,我们可以确定轮式移动机器人在世界坐标系中x轴和y轴的速度分别是x轴和y轴。因此本文提出了一个关于车轮驱动力矩与驱动力之间关系的约束函数,并将其应用于求解两个条件下的驱动轮驱动力方程。P是第一个限制条件。这与轮式移动机器人运动学理论分析结果一致。这个几何中心在沿轮轴的Y方向上是没有速度的(即速度为0),因此xsinθ-ycosθ+θd=0。第二个和第三个约束条件是左右轮沿运动方向x轴运动时不会打滑,即xcosθ+ysinθ-bθ=ral和xcosθ+ysin6+b0=rαr。为了简化计算过程,把这两个约束条件都转化为一个线性规划问题来求解。把上面提到的三个限制条件整合在一起,并以矩阵的方式表达,如公式(2.1)所示:
式(2.1)
其中,见式(2.2)。
式(2.2)
图2.1 两驱动轮非完整轮式移动机器人
运动学数学模型
根据运动关系可得(式2.3):
式(2.3)
在此,X与Y代表机器人在连体坐标系中X与Y方向上的移动。根据运动学方程推导出机器人运动过程中关节角度变化与驱动电机转角之间的函数关系式,从而得到一个关于机器人各参数的数学模型。该公式(2.3)详细阐述了机器人在X方向上的速度、在Y方向上的速度转换,以及角速度与左右轮速度之间的相互关系。
对式(2.3)巧整理后,得式(2.4):
式(2.4)
从图2.1可以看出,移动机器人在世界坐标系中的移动速度与在连体坐标系中的速度是相互对应的。利用该关系式可以计算出任意两个不同距离下机器人运动时各关节所需驱动力和力矩,并可确定其方向及大小,从而为机器人控制系统设计提供依据。经过数学推导,我们得到了一个公式(2.5)的关系;
式(2.5)
从式(2.4)和式(2.5)可得式(2.6):
式(2.6)
式(2.6)描述了位置(x,y,θ)与左右轮的速度α=(αr,αl)T之间关系。令式(2.7)才有式(2.8):
式(2.7)
式(2.8)
从式(2.8)是系统的运动学方程。
动力学数学模型
在早期的移动机器人研究中,大部分都是基于其运动学模型进行的,其中实际的速度是由电机的转速决定的,而转速则是通过力矩来确定的。随着科学技术的发展,人们发现机器人需要更多的驱动力和控制量才能使运动达到理想状态。轮式移动机器人因受到内部参数变化和外部干扰等多种因素的作用,其电机无法达到预期的运行速度。为了满足不同场合下对机器人性能的要求,需要将驱动系统与控制部分分离开来。因此,单纯地关注其运动学模型是不足够的,我们还需要深入研究其动力学模型,以确保其在实际的工程项目中得到应用。
从力学的视角来看,它在x, y方向上所受的力应当是均衡的,并且在电机轴与垂直xoy平面方向上产生的力矩也应当达到平衡状态。通过对这一问题进行数学建模,得出了一些基本的约束关系。基于这些限制条件,我们能够构建出移动机器人的动力学数学模型。本文将通过求解该模型来确定其运动状态及控制律,并以轮式机器人为例进行了仿真研究。从根提机器人的轮子与地面的接触情况来看,左右两个轮子都会受到一定的阻力,分别被定义为Fxl和Fxr,并且在转向过程中会受到一个沿着y轴方向的力FY的影响。假设该系统中的两个轮子产生的力矩分别是Tl和Tr。因此,本文将对移动机器人进行受力分析并建立相应的运动微分方程组,通过求解该方程即可获得机器人各构件所受的合力及作用于关节处的外力,从而使其能够满足所需的约束关系。可以推导出以下的动力学公式(2.9):
式(2.9)
把式(2.9)整理成矩阵形得式(2.10):
式(2.10)
其中,把式(2.10)与式(2.11)对式(2.9)两边同时左乘沪(g),得式(2.12):
式(2.10)
式(2.11)
得式(2.12):
式(2.12)
由式(2.1)与式(2.8),得式(2.13):
式(2.13)
令式(2.14)通过计算,得式(2.15)(2.16)(2.17):
式(2.14)
式(2.15)
式(2.16)
式(2.16)
由式(2.15)和式(2.16),可得式(2.17):
式(2.17)
2.2.滑模变结构控制
模控制技术在多个行业中都得到了广泛的运用。对于此类系统设计出的控制器难以直接应用于实际工程中。WMRs的数学模型是一个普遍的非线性模型,它包含了内部的耦合部分、非线性部分和外部的干扰因素。这篇文献利用滑模技术为机械手设计了一款跟踪控制器。本文在以上研究基础上,提出并实现了一个新的滑模面和相应的控制系统设计方案。该文献也为PVOLT飞机提供了一种特定的控制策略。在此背景下,本文将重点介绍滑模变结构控制算法在飞行控制系统中的研究与应用。在最近的几年中,利用自适应和神经网络等先进的控制技术对飞行器的动态系统进行变结构控制,这种方法逐渐得到了学术界的广泛关注。综合考虑,滑模变结构控制方法通常适用于那些具有高度非线性特性、参数发生变化、受到外界扰动或处于未建模状态的动态对象。
接下来,让我们给出一个简洁的示例。设定非线性控制系统的公式为(2.18):
式(2.18)
式中,x∈Rn表示系统的状态变量,u∈R表示系统的控制量,t表示时间。
在系统式(2.18)中,滑模面s(x ,t)=0,控制单元u=u(x,t),在s(x t)=0的值上进行切换,按照下述逻辑在s(x,t)=0上切换,得到的结果是(2.18)。