ML之SIFT_FLANN:FLANN算法的简介、使用方法(对图片提取SIFT特征并利用FLANN方法实现计算图像相似度并可视化案例)之详细攻略

ML之SIFT_FLANN:FLANN算法的简介、使用方法(对图片提取SIFT特征并利用FLANN方法实现计算图像相似度并可视化案例)之详细攻略

目录

FLANN算法

1、flann的搜索步骤

(1)、建立索引

(2)、进行搜索

FLANN算法的使用方法(对图片提取SIFT特征并利用FLANN方法实现计算图像相似度并可视化案例)

输出结果

实现代码


FLANN算法

          FLANN库全称是Fast Library for Approximate Nearest Neighbors,它是目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制。
          使用flann的搜索,整体来说分为两步,一是建立索引,二是搜索。

  • 使用SIFT特征提取关键点;
  • 计算SIFT特征描述子;
  • 使用FLANN匹配器进行描述子向量匹配。

1、flann的搜索步骤

(1)、建立索引

        其实就是要两部分参数,一是数据也就是mat矩阵,二是一些具体参数,这个参数要根据建立的索引类型来设置。而有哪些索引类型呢?  共有:线性索引、KD-Tree索引、K均值索引、复合索引、LSH方法索引、自动索引 六种。

(2)、进行搜索

有两种搜索方式 :knnSearch //搜索k邻近 、radiusSearch //搜索半径最近 
从返回结果考虑两者的不同之处在于: 
knnSearch返回最近邻的点(具体点的个数由用户设定,设n个就一定返回n个); 
radiusSearch返回搜索半径内所有点(即可能不存在符合条件的点,则返回空的)。

FLANN算法的使用方法(对图片提取SIFT特征并利用FLANN方法实现计算图像相似度并可视化案例)

输出结果

实现代码

ML之SIFT:对图片提取SIFT特征并利用FLANN方法判别图像的相似度并可视化

    sift = cv2.xfeatures2d.SIFT_create()   
    # 查找监测点和匹配符
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    print(len(kp1), len(des1) )   # 1402, 1402


    FLANN_INDEX_KDTREE = 0
    indexParams = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    searchParams = dict(checks=50)
    flann = cv2.FlannBasedMatcher(indexParams, searchParams)
    # 进行匹配
    matches = flann.knnMatch(des1, des2, k=2)
    # 准备空的掩膜 画好的匹配项
    matchesMask = [[0, 0] for i in range(len(matches))]
     
    for i, (m, n) in enumerate(matches):
        if m.distance < 0.7*n.distance:
            matchesMask[i] = [1, 0]
     
    drawPrams = dict(matchColor=(0, 255, 0),
                     singlePointColor=(255, 0, 0),
                     matchesMask=matchesMask,
                     flags=0)
    img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, matches, None, **drawPrams)
    img_PutText = cv2.putText(img3, "SIFT+kNNMatch: Image Similarity Comparisonn", (40, 40),cv2.FONT_HERSHEY_COMPLEX, 1.5, (0, 0, 255), 3,)
    img4 = cv2.resize(img_PutText, (0, 0), fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST)  #缩小1/2
     
    cv2.imshow("matches", img4)
    cv2.waitKey(7000)
    cv2.destroyAllWindows()

<think>好的,我需要回答用户关于FLANN算法的介绍、原理、实现和应用的问题。首先,我应该先回顾一下用户提供的引用内容,看看有哪些相关的信息可以利用。 用户提供的引用中有几个提到了FLANN算法。引用3提到FLANN是用于高维空间近似最近邻搜索的C++库,广泛应用于计算机视觉和机器学习,特别是在处理大量特征点的图像匹配问题[^3]。引用5也提到使用FLANN进行特征匹配,提到了与ORB算法的结合[^5]。此外,引用4提到了Lowe's算法用于筛选匹配点,虽然主要是关于SIFT的,但可能和FLANN的应用场景相关[^4]。 接下来,我需要整理FLANN的基本信息。FLANN的全称是Fast Library for Approximate Nearest Neighbors,主要解决高维数据中的最近邻搜索问题。传统的精确最近邻搜索在高维数据中效率很低,所以FLANN采用近似方法提高速度,适合大规模数据。 关于原理,FLANN可能使用了一些树结构或者哈希方法。常见的算法如KD树、k-means树等,或者基于局部敏感哈希(LSH)。需要确认用户提供的引用是否有提到具体方法。引用3提到它是快速的近似算法,但没有具体说明原理。可能需要结合一般知识补充。 实现方面,用户引用3和5提到在OpenCV中的应用,特别是在特征匹配时,比如SIFT、SURF、ORB等描述子的匹配。FLANN在OpenCV中的实现可能包括不同的索引类型和搜索参数,比如KD树索引和K-means树索引的组合,以及如何配置这些参数来平衡速度和精度。 应用方面,除了图像特征匹配(引用3、5),还可能用于立体视觉中的特征匹配(引用4),以及机器学习中的近邻搜索任务。需要结合用户提供的引用和一般应用场景来列举。 用户可能需要更详细的步骤说明,比如在OpenCV中如何使用FLANN匹配器,或者参数设置的注意事项。此外,引用4提到的Lowe's比率测试可能与FLANN结合使用,提高匹配质量,这也是一个要点。 需要确保回答结构清晰,分点介绍原理、实现、应用,且引用相关的参考文献。同时,生成的相关问题要围绕FLANN的原理、优化、比较和应用展开。</think>### FLANN算法介绍 **FLANN**(Fast Library for Approximate Nearest Neighbors)是一种用于高维空间中**近似最近邻搜索**的高效算法库,广泛应用于计算机视觉、机器学习和图像处理领域。 --- ### 原理 1. **近似最近邻(ANN)问题** 在高维空间中,精确最近邻搜索的时间复杂度极高。FLANN通过牺牲少量精度来大幅提升搜索速度,主要采用以下方法: - **树型结构索引**:如随机KD树、分层k-means树(KDTREE、KMEANS)。 - **哈希技术**:如局部敏感哈希(LSH),通过哈希函数将相似数据映射到相同桶中。 - **自动参数优化**:根据数据集特性,自动选择最优的索引类型和搜索参数。 2. **搜索过程** - **构建索引**:根据数据集构建树或哈希表。 - **近似搜索**:通过遍历索引结构快速缩小候选范围,返回近似最近邻结果。 --- ### 实现 在OpenCV中,FLANN通常与特征描述子(如SIFT、SURF、ORB)结合使用实现特征匹配: ```python import cv2 # 创建SIFT检测器和描述子 sift = cv2.SIFT_create() kp1, des1 = sift.detectAndCompute(img1, None) kp2, des2 = sift.detectAndCompute(img2, None) # 配置FLANN参数 index_params = dict(algorithm=1, trees=5) # 使用KD树 search_params = dict(checks=50) # 搜索次数 # 创建FLANN匹配器 flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) # 应用Lowe's比率测试筛选匹配点 good_matches = [] for m, n in matches: if m.distance < 0.7 * n.distance: good_matches.append(m) ``` --- ### 应用场景 1. **图像特征匹配** - 结合SIFT、SURF等描述子,用于图像拼接、目标识别[^3][^5]。 - 示例:指纹识别中通过FLANN快速匹配特征点。 2. **立体视觉** - 在双目立体匹配中,快速计算左右图像特征对应关系。 3. **大规模数据检索** - 适用于高维数据的快速相似性搜索,如推荐系统、聚类分析。 --- ### 优势与局限性 - **优势**:在高维数据中速度显著优于暴力匹配,支持多线程和行化。 - **局限性**:近似结果可能存在误差,需通过参数调整平衡精度与速度。 ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值