Dataset之LSUN:LSUN数据集的下载使用教程

本教程详细介绍了如何在线下载和使用LSUN数据集,包括通过curl方法下载及提供的category_indices.txt, data.py, download.py和README.md等源文件。" 118275127,9856254,C++位运算详解:异或、与、或操作,"['C++编程', '位操作', '算法', '数据结构']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

### 下载 LSUN 256x256 数据集的方法 LSUN 数据集提供了一个大规模的图像集合,适用于多种计算机视觉任务,如图像分类、目标检测以及场景分析等[^1]。为了获取分辨率为 256x256 的 LSUN 数据集,可以通过官方提供的链接或工具完成下载。 以下是具体方法: #### 方法一:通过官方网站下载 访问 LSUN 官方网站 (https://www.yf.io/p/lsun),找到对应的数据集类别并选择所需的分辨率版本。对于 256x256 分辨率的图像,通常会标注清晰的文件名前缀,例如 `train_256` 或类似的命名方式。点击对应的下载按钮即可获得压缩包形式的数据集。 #### 方法二:利用 Python 脚本创建自定义子集 如果需要进一步裁剪或调整数据集的内容,可以参考如下脚本实现定制化处理。此方法基于 PyTorch 提供的功能来加载 LMDB 文件格式的数据集,并将其转换为目标尺寸。 ```python import os from torchvision import datasets, transforms def create_lsun_dataset(output_dir, input_path, width=256, height=256): transform = transforms.Compose([ transforms.Resize((height, width)), transforms.ToTensor() ]) dataset = datasets.LSUN(root=input_path, classes=['car_train'], transform=transform) if not os.path.exists(output_dir): os.makedirs(output_dir) for i, data in enumerate(dataset): img, label = data save_path = os.path.join(output_dir, f"{i}.png") transforms.ToPILImage()(img).save(save_path) # 使用示例 create_lsun_dataset('~/lsun/output', '~/lsun/train_lmdb', width=256, height=256) ``` 上述代码片段展示了如何读取原始 LMDB 格式的 LSUN 数据集,并将其保存为指定大小(此处为 256x256 像素)的 PNG 图像文件[^3]。 需要注意的是,在某些情况下可能还需要额外安装依赖库,比如 `lmdb` 和其他支持模块。 另外值得注意的一点是,除了 LSUN 外还有其他相似用途的数据源可供选择,例如 Places2 数据集中也包含了大量不同类型的自然景观图片资源,其标准版拥有约 180 万张照片覆盖多达 365 种独立标签种类[^2],这或许也能成为备选方案之一视乎项目需求而定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值