NLP:文档结构化(将大量的自然语言文本数据转化为结构化数据)的简介(LDA对比NMF等)、常用四大方法(依存分析/命名实体识别/主题模型/结构化序列标记)、案例应用之详细攻略

本文档介绍了文档结构化的概念,包括将自然语言文本转化为结构化数据的方法:依存分析、命名实体识别、主题模型(LDA对比NMF)和结构化序列标记。并提供了利用NLP库如spacy和预训练模型BERT进行实际应用的案例代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLP:文档结构化(将大量的自然语言文本数据转化为结构化数据)的简介(LDA对比NMF等)、常用四大方法(依存分析/命名实体识别/主题模型/结构化序列标记)、案例应用之详细攻略

目录

文档结构化的简介

1、文档结构化(将大量的自然语言文本数据转化为结构化数据)的概述

2、四大方法:依存分析/命名实体识别/主题模型/结构化序列标记

3、LDA对比NMF

4、LDA实现主题推断的过程:初始化和迭代推断

文档结构化的案例应用

T1、依存分析法

NLP:利用spacy的en_core_web_sm预训练语言模型通过对文本数据的依存分析法(主谓宾/语法树结构)实现将大量的文本数据转化为结构化数据应用案例实现代码

T2、命名实体识别

NLP:利用spacy的en_core_web_sm预训练语言模型通过对文本数据的命名实体识别法(实体及其类型/ORG_PERSON_GPE)实现将大量的文本数据转化为结构化数据应用案例实现代码

T3、主题模型

NLP之TM:基于多个文本数据(jieba分词+Dictionary构建字典+BoW转词频向量)利用LDA模型(gensim)实现主题模型进而转为结构化数据应用案例

NLP之TM:基于多个文本数据(CountVectorizer转词频向量)利用LDA模型(sklearn)实现主题模型进而转为结构化数据应用案例

NLP之TM:基于多个文本数据(TfidfVectorizer向量化)利用NMF模型(sklearn)实现主题模型进而转为结构化数据应用案例

NLP之TM:基于多个文本数据(BertTokenizer)利用BERT预训练模型(transformers)结合K-means均值聚类算法对文本向量进行聚类实现主题模型进而转为结构化数据应用案例

T4、结构化序列标记

NLP:基于对文本数据利用LSTM算法(tensorflow框架/学习映射)算法作为标签器进行结构化序列标记实现将大量的文本数据转化为结构化数据应用案例实现代码


文档结构化的简介

1、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值