Python之shap:shap.force_plot函数的源码解读之详细攻略

该博客聚焦于Python中shap库的shap.force_plot函数,对其源码进行详细解读,还针对shap.force_plot(explainer.expected_value[1], shap_values[1][0,:], X_display.iloc[0,:])展开分析,为相关开发者提供技术参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python之shap:shap.force_plot函数的源码解读之详细攻略

目录

shap.force_plot函数的源码解读

shap.force_plot(explainer.expected_value[1], shap_values[1][0,:], X_display.iloc[0,:])解读


shap.force_plot函数的源码解读

shap.force_plot(explainer.expected_value[1], shap_values[1][0,:], X_display.iloc[0,:])解读

def force(base_value, shap_values=None, features=None, feature_names=None, out_names=None, link="identity", plot_cmap="RdBu", matplotlib=False, show=True, figsize=(20,3), ordering_keys=None, ordering_keys_time_format=None, text_rotation=0, contribution_threshold=0.05):

功能

Visualize the given SHAP values with an additive force layout.

使用附加力图布局可视化给定的 SHAP 值。

参数

    Parameters

    ----------

base_value : float,This is the reference value that the feature contributions start from. For SHAP values it should be the value of explainer.expected_value.

这是特征贡献开始时的参考值。 对于SHAP值,它应该是 explainer.expected_value 的值。

shap_values : numpy.array,Matrix of SHAP values (# features) or (# samples x # features). If this is a 1D array then a single force plot will be drawn, if it is a 2D array then a stacked force plot will be drawn.

SHAP 值矩阵(# features)或(# samples x # features)。 如果这是一维数组,则将绘制单个力图,如果是二维数组,则将绘制堆叠力图。

features : numpy.array,Matrix of feature values (# features) or (# samples x # features). This provides the values of all the features, and should be the same shape as the shap_values argument.

特征值矩阵(# features)或(# samples x # features)。 这提供了所有特征的值,并且应该与shap_values参数的形状相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值