ML:机器学习中启发式策略的简介、规则学习中的启发式和决策树中的启发式的联系和区别之详细攻略

ML:机器学习中启发式策略的简介、规则学习中的启发式和决策树中的启发式的联系和区别之详细攻略

目录

机器学习中启发式策略的简介

规则学习中的启发式和决策树中的启发式有什么区别?


机器学习中启发式策略的简介

简介

启发式是一种用于指导算法设计和搜索空间的策略。在机器学习中,启发式通常用于指导特征选择、模型选择和超参数调整等领域。

应用

在规则学习和决策树算法中,启发式用于确定候选规则或分裂点的优先级,从而提高算法的效率和准确性。

规则学习和决策树算法中的启发式有不同的设计目标和评估方式,但都旨在提高算法的效率和准确性

规则学习中的启发式和决策树中的启发式有什么区别?

规则学习中的启发式

决策树中的启发式

区别

规则学习器仅评估了被候选规则覆盖的实例集合的质量。

决策树中的启发式评估了许多不相交集合的平均质量

理解

在规则学习中,启发式仅评估候选规则覆盖的实例集合的质量,而不考虑实例集合的子集。这使得规则学习器更加关注规则的覆盖率和准确性,从而使得生成的规则更易于解释和理解。

决策树中的启发式则考虑了多个不相交的实例集合,并根据这些集合的平均质量选择最优的分裂点。这使得决策树算法更加注重泛化性能,从而在处理复杂数据集时具有更好的效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值