ML:机器学习中启发式策略的简介、规则学习中的启发式和决策树中的启发式的联系和区别之详细攻略
目录
机器学习中启发式策略的简介
简介 | 启发式是一种用于指导算法设计和搜索空间的策略。在机器学习中,启发式通常用于指导特征选择、模型选择和超参数调整等领域。 |
应用 | 在规则学习和决策树算法中,启发式用于确定候选规则或分裂点的优先级,从而提高算法的效率和准确性。 规则学习和决策树算法中的启发式有不同的设计目标和评估方式,但都旨在提高算法的效率和准确性。 |
规则学习中的启发式和决策树中的启发式有什么区别?
规则学习中的启发式 | 决策树中的启发式 | |
区别 | 规则学习器仅评估了被候选规则覆盖的实例集合的质量。 | 决策树中的启发式评估了许多不相交集合的平均质量 |
理解 | 在规则学习中,启发式仅评估候选规则覆盖的实例集合的质量,而不考虑实例集合的子集。这使得规则学习器更加关注规则的覆盖率和准确性,从而使得生成的规则更易于解释和理解。 | 决策树中的启发式则考虑了多个不相交的实例集合,并根据这些集合的平均质量选择最优的分裂点。这使得决策树算法更加注重泛化性能,从而在处理复杂数据集时具有更好的效果。 |