Dataset之IRIS:鸢尾花(Iris)数据集的简介、下载、使用方法之详细攻略

Dataset之IRIS:鸢尾花(Iris)数据集的简介、下载、使用方法之详细攻略

目录

莺尾花(Iris)数据集的简介

1、莺尾花(Iris)数据集可视化

莺尾花(Iris)数据集的下载

莺尾花(Iris)数据集的使用方法


莺尾花(Iris)数据集的简介

      Iris数据集,也称鸢尾花数据集,是一类多重变量分析的数据集,于1988年公开,用于分类任务。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
      数据集包含 3 个类别,每个类别 50 个实例,其中每个类别指的是一种鸢尾植物。一类与另一类线性可分;后者不能彼此线性分离。 

英文

中文

备注

sepal length

萼片长度

sepal width

萼片宽度

petal length

花瓣长度

petal width

花瓣宽度

class

类别

Iris Setosa、Iris Versicolour、 Iris Virginica

feature_names = ['sepal length','sepal width','petal length','petal width']

官网UCI Machine Learning Repository: Iris Data Set

1、莺尾花(Iris)数据集可视化


from sklearn import datasets

iris_data = datasets.load_iris()
print(iris_data.DESCR)
X_arr = iris_data.data
y_arr = iris_data.target

def iris_data_plot(X_arr, y_arr):
    import matplotlib.pyplot as plt
    plt.figure()
    setosa_data = X_arr[y_arr == 0]
    plt.scatter(setosa_data[:, 0], setosa_data[:, 1], color="r", label="Iris_setosa")

    versicolor_data = X_arr[y_arr == 1]
    plt.scatter(versicolor_data[:, 0], versicolor_data[:, 1], color="g", label="Iris_versicolor")

    virginica_data = X_arr[y_arr == 2]
    plt.scatter(virginica_data[:, 0], virginica_data[:, 1], color="b", label="Iris_virginica")
    plt.legend()
    plt.title('Iris plants dataset,Instances=150, Attributes=4')
    plt.show()
iris_data_plot(X_arr, y_arr)

莺尾花(Iris)数据集的下载

下载链接UCI Machine Learning Repository: Iris Data Set

莺尾花(Iris)数据集的使用方法

相关文章
MAT之GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花(iris数据集)种类识别正确率、各个模型运行时间对比
MAT之ELM:ELM实现鸢尾花(iris数据集)种类测试集预测识别正确率(better)结果对比
ML之SVM:基于SVM(sklearn+subplot)的鸢尾花iris数据集的前两个特征(线性不可分的两个样本),判定鸢尾花是哪一种类型
ML之SVM:基于SVM(sklearn+subplot)的鸢尾花iris数据集的前两个特征(线性不可分的两个样本),判定鸢尾花是哪一种类型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值