Py之PyTables:PyTables的简介、安装、使用方法详细攻略

Py之PyTables:PyTables的简介、安装、使用方法详细攻略

目录

PyTables的简介

1、PyTables 的特点

PyTables的安装

PyTables的使用方法

1、创建、写入和读取 HDF5 文件,以及操作其中的数据


PyTables的简介

PyTables 是一个 Python 的库,用于处理大型数据集的高性能数据存储和查询。它建立在 HDF5 文件格式之上,提供了高效的数据压缩、索引和查询功能,适用于科学计算、数据分析和机器学习等领域。
PyTables 提供了两个主要的类:Table 和 Array。Table 类提供了类似关系型数据库表的功能,可以存储结构化数据,并支持索引和查询。Array 类用于存储多维数组数据,可以高效地进行切片和检索操作。
pytables是包管理分层数据和设计效率和容易处理非常大量的数据。你可以下载和使用它的免费pytables。你可以访问的文件,一些使用和介绍这里的例子。pytables之上的HDF5库,使用Python语言和NumPy包。它的特点是一个面向对象的接口,结合性能的代码的关键部分的C扩展(使用Cython),使得它快速,使用工具的交互浏览但非常容易,过程和检索大量数据。PyTables的一个重要特征是,它优化了内存和磁盘资源,数据需要更少的空间(特别是如果在飞行中使用压缩)比其他的解决方案如关系或面向对象的数据库。

相关地址Welcome to PyTables’ documentation! — PyTables 3.9.2 documentation

1、PyTables 的特点

高性能:PyTables 使用了多种优化技术,包括数据压缩、索引和缓存等,以提高数据存储和查询的性能。
支持大型数据集:PyTables 可以处理非常大的数据集,可以将数据存储在单个文件中,并且可以高效地读取和写入部分数据,而不需要加载整个数据集到内存中。
灵活性:PyTables 提供了丰富的 API,可以灵活地进行数据的存储、查询和分析。同时,它还支持多种数据类型和压缩算法,可以根据需求选择合适的存储方式。
跨平台性:PyTables 可以在多个操作系统上运行,包括 Windows、Linux 和 macOS,且与 Python 的其他科学计算库(如 NumPy、SciPy 和 Pandas)兼容性良好。

PyTables的安装

# T1、在线下载
pip install tables
pip install -i https://mirrors.aliyun.com/pypi/simple tables
pip install -i https://mirrors.aliyun.com/pypi/simple tables --upgrade



# T2、采用whl本地安装方式
pip install tables-3.4.2-1-cp36-cp36m-win_amd64.whl

whl文件下载地址tables · PyPI

PyTables的使用方法

1、创建、写入和读取 HDF5 文件,以及操作其中的数据

创建一个新的 HDF5 文件,包含一个 Group、一个 Array 和一个 Table。向 Table 中写入数据。读取 HDF5 文件中的数据,包括 Array 和 Table 中的数据。

import tables as tb
import numpy as np

# 创建一个新的 HDF5 文件并打开
with tb.open_file('example.h5', mode='w') as f:
    # 创建一个 Group 对象
    group = f.create_group('/', 'my_group', 'Group for example')

    # 创建一个 Array 对象
    data = np.random.randn(100, 100)
    f.create_array(group, 'my_array', data, 'Example array')

    # 创建一个 Table 对象
    description = {'col1': tb.Float64Col(), 'col2': tb.StringCol(10)}
    table = f.create_table(group, 'my_table', description, 'Example table')

    # 写入数据到 Table
    for i in range(10):
        table.row['col1'] = i
        table.row['col2'] = 'row' + str(i)
        table.row.append()
    table.flush()

# 读取 HDF5 文件中的数据
with tb.open_file('example.h5', mode='r') as f:
    # 访问 Group 对象
    group = f.get_node('/my_group')

    # 访问 Array 对象
    array = f.get_node('/my_group/my_array')
    print("Array shape:", array.shape)

    # 访问 Table 对象
    table = f.get_node('/my_group/my_table')
    print("Table description:", table.description)

    # 读取 Table 中的数据
    for row in table.iterrows():
        print(row['col1'], row['col2'])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值