Py之PyTables:PyTables的简介、安装、使用方法详细攻略
目录
PyTables的简介
PyTables 是一个 Python 的库,用于处理大型数据集的高性能数据存储和查询。它建立在 HDF5 文件格式之上,提供了高效的数据压缩、索引和查询功能,适用于科学计算、数据分析和机器学习等领域。
PyTables 提供了两个主要的类:Table 和 Array。Table 类提供了类似关系型数据库表的功能,可以存储结构化数据,并支持索引和查询。Array 类用于存储多维数组数据,可以高效地进行切片和检索操作。
pytables是包管理分层数据和设计效率和容易处理非常大量的数据。你可以下载和使用它的免费pytables。你可以访问的文件,一些使用和介绍这里的例子。pytables之上的HDF5库,使用Python语言和NumPy包。它的特点是一个面向对象的接口,结合性能的代码的关键部分的C扩展(使用Cython),使得它快速,使用工具的交互浏览但非常容易,过程和检索大量数据。PyTables的一个重要特征是,它优化了内存和磁盘资源,数据需要更少的空间(特别是如果在飞行中使用压缩)比其他的解决方案如关系或面向对象的数据库。
相关地址:Welcome to PyTables’ documentation! — PyTables 3.9.2 documentation
1、PyTables 的特点
高性能:PyTables 使用了多种优化技术,包括数据压缩、索引和缓存等,以提高数据存储和查询的性能。
支持大型数据集:PyTables 可以处理非常大的数据集,可以将数据存储在单个文件中,并且可以高效地读取和写入部分数据,而不需要加载整个数据集到内存中。
灵活性:PyTables 提供了丰富的 API,可以灵活地进行数据的存储、查询和分析。同时,它还支持多种数据类型和压缩算法,可以根据需求选择合适的存储方式。
跨平台性:PyTables 可以在多个操作系统上运行,包括 Windows、Linux 和 macOS,且与 Python 的其他科学计算库(如 NumPy、SciPy 和 Pandas)兼容性良好。
PyTables的安装
# T1、在线下载
pip install tables
pip install -i https://mirrors.aliyun.com/pypi/simple tables
pip install -i https://mirrors.aliyun.com/pypi/simple tables --upgrade
# T2、采用whl本地安装方式
pip install tables-3.4.2-1-cp36-cp36m-win_amd64.whl
whl文件下载地址tables · PyPI
PyTables的使用方法
1、创建、写入和读取 HDF5 文件,以及操作其中的数据
创建一个新的 HDF5 文件,包含一个 Group、一个 Array 和一个 Table。向 Table 中写入数据。读取 HDF5 文件中的数据,包括 Array 和 Table 中的数据。
import tables as tb
import numpy as np
# 创建一个新的 HDF5 文件并打开
with tb.open_file('example.h5', mode='w') as f:
# 创建一个 Group 对象
group = f.create_group('/', 'my_group', 'Group for example')
# 创建一个 Array 对象
data = np.random.randn(100, 100)
f.create_array(group, 'my_array', data, 'Example array')
# 创建一个 Table 对象
description = {'col1': tb.Float64Col(), 'col2': tb.StringCol(10)}
table = f.create_table(group, 'my_table', description, 'Example table')
# 写入数据到 Table
for i in range(10):
table.row['col1'] = i
table.row['col2'] = 'row' + str(i)
table.row.append()
table.flush()
# 读取 HDF5 文件中的数据
with tb.open_file('example.h5', mode='r') as f:
# 访问 Group 对象
group = f.get_node('/my_group')
# 访问 Array 对象
array = f.get_node('/my_group/my_array')
print("Array shape:", array.shape)
# 访问 Table 对象
table = f.get_node('/my_group/my_table')
print("Table description:", table.description)
# 读取 Table 中的数据
for row in table.iterrows():
print(row['col1'], row['col2'])