语义分割(研究现状、技术基础)

本文介绍了语义分割技术在自动驾驶领域的应用,包括通用语义分割和实时语义分割的研究现状,强调了其在智能车环境感知中的重要性。文章探讨了FCN、UNet、SegNet、RefineNet、DeepLab系列和PSPNet等经典模型,以及实时语义分割中的轻量化结构如ENet和BiSeNet。同时,概述了编码器、解码器技术和多尺度特征融合方法。文章还讨论了语义分割的评价标准,并提到了Cityscapes和CamVid等自动驾驶相关数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

语义分割的目标是输入图像的每个像素分配一个标签,即像素级别的物体分类任务;主要是通过算法模型对输入图像的像素进行预测并分类,生成语义标签。如下图所示,

其中一张场景图像及该场景对应的语义分割标签图像,道路所属的所有像素区域都被标注为紫色,即道路类。

随着语义分割技术的不断发展与进步,它可以广泛地应用于人脸分割、医学图像处理和自动驾驶领域的感知应用。在医学图像处理领域中,利用语义分割技术实现病灶点分割、癌细胞分割等功能是目前研究的热点方向。在智能车场景下,语义分割技术应用更为广泛,通常将相机放置于智能车的前方,语义分割技术通过对可行驶区域、行人、车辆等目标进行精准分析,为实现车辆周围环境信息感知提供可能。

目录

一、国内外研究现状

1.1 通用语义分割

1.2 实时语义分割

二、语义分割技术基础

2.1 编码器技术

2.2 解码器技术

2.3 多尺度特征融合

三、语义分割评价标准

四、自动驾驶——语义分割相关数据集

参考文献


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一颗小树x

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值