Apollo 2.0 传感器标定方法 使用指南(官方)

点击我:官方地址

 

Apollo 2.0 传感器标定方法使用指南

欢迎使用Apollo传感器标定服务。本文档提供在Apollo 2.0中新增的3项传感器标定程序的使用流程说明,分别为:相机到相机的标定,相机到多线激光雷达的标定,以及毫米波雷达到相机的标定。

文档概览

  • 概述
  • 准备工作
  • 标定流程
  • 标定结果获取
  • 标定结果验证

概述

在Apollo 2.0中,我们新增了3项标定功能:相机到相机的标定,相机到多线激光雷达的标定,以及毫米波雷达到相机的标定。对于多线激光雷达到组合惯导的标定,请参考多线激光雷达-组合惯导标定说明。Velodyne HDL64用户还可以使用Apollo 1.5提供的标定服务平台。标定工具均以车载可执行程序的方式提供。用户仅需要启动相应的标定程序,即可实时完成标定工作并进行结果验证。标定结果以 .yaml 文件形式返回。

准备工作

  1. 下载标定工具,并解压缩到$APOLLO_HOME/modules/calibration目录下。(APOLLO_HOME是apollo代码的根目录)

  2. 相机内参文件

    内参包含相机的焦距、主点和畸变系数等信息,可以通过一些成熟的相机标定工具来获得,例如 ROS Camera Calibration Tools 和 Camera Calibration Toolbox for Matlab。内参标定完成后,需将结果转换为 .yaml 格式的文件。下面是一个正确的内参文件样例:

    header: 
      seq: 0
      stamp: 
        secs: 0
        nsecs: 0
      frame_id: short_camera
    height: 1080
    width: 1920
    distortion_model: plumb_bob
    D: [-0.535253, 0.259291, 0.004276, -0.000503, 0.0]
    K: [1959.678185, 0.0, 1003.592207, 0.0, 1953.786100, 507.820634, 0.0, 0.0, 1.0]
    R: [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
    P: [1665.387817, 0.0, 1018.703332, 0.0, 0.0, 1867.912842, 506.628623, 0.0, 0.0, 0.0, 1.0, 0.0]
    binning_x: 0
    binning_y: 0
    roi: 
      x_offset: 0
      y_offset: 0
      height: 0
      width: 0
      do_rectify: False

    我们建议每一只相机都需要单独进行内参标定,而不是使用统一的内参结果。这样可以提高外参标定的准确性。

  3. 初始外参文件

    本工具需要用户提供初始的外参值作为参考。一个良好的初始值可以帮助算法得到更精确的结果。下面是一个正确的相机到激光雷达的初始外参文件样例,其中translation为相机相对激光雷达的平移距离关系,rotation为旋转矩阵的四元数表达形式:

    header:
      seq: 0
      stamp:
        secs: 0
        nsecs: 0
      frame_id: velodyne64
    child_frame_id: short_camera
    transform:
      rotation:
        y: 0.5
        x: -0.5
        w: 0.5
        z: -0.5
      translation:
        x: 0.0
        y: 1.5
        z: 2.0

    注意:相机到激光雷达的标定方法比较依赖于初始外参值的选取,一个偏差较大的外参,有可能导致标定失败。所以,请在条件允许的情况下,尽可能提供更加精准的初始外参值。

  4. 标定场地

    我们的标定方法是基于自然场景的,所以一个理想的标定场地可以显著地提高标定结果的准确度。我们建议选取一个纹理丰富的场地,如有树木,电线杆,路灯,交通标志牌,静止的物体和清晰车道线。图1是一个较好的标定环境示例:

    图1 一个良好的标定场地

  5. 所需Topics

    确认程序所需传感器数据的topics均有输出。如何查看传感器有数据输出?

    各个程序所需的topics如下表1-表3所示:

    表1. 相机到相机标定所需topics

    传感器Topic名称Topic发送频率(Hz)
    Short_Camera/apollo/sensor/camera/traffic/image_short9
    Long_Camera/apollo/sensor/camera/traffic/image_long9
    INS/apollo/sensor/gnss/odometry100
    INS/apollo/sensor/gnss/ins_stat2

    表2. 相机到64线激光雷达标定所需topics

    传感器Topic名称Topic发送频率(Hz)
    Short_Camera/apollo/sensor/camera/traffic/image_short9
    LiDAR/apollo/sensor/velodyne64/compensator/PointCloud210
    INS/apollo/sensor/gnss/odometry100
    INS/apollo/sensor/gnss/ins_stat2

    表3. 毫米波雷达到相机标定所需topics

    传感器Topic名称Topic发送频率(Hz)
    Short_Camera/apollo/sensor/camera/traffic/image_short9
    INS/apollo/sensor/gnss/odometry100
    INS/apollo/sensor/gnss/ins_stat2

标定流程

所有标定程序需要用到车辆的定位结果。请确认车辆定位状态为56,否则标定程序不会开始采集数据。输入以下命令可查询车辆定位状态:

```bash
rostopic echo /apollo/sensor/gnss/ins_stat
```

相机到相机

  1. 运行方法

    使用以下命令来启动标定工具:

    cd /apollo/scripts
    bash sensor_calibration.sh camera_camera
  2. 采集标定数据

    • 由于两个相机的成像时间无法完全同步,所以在录制数据的时候,尽量将车辆进行慢速行驶,可以有效地缓解因时间差异所引起的图像不匹配问题。
    • 两个相机需有尽量大的图像重叠区域,否则该工具将无法进行外参标定运算。
  3. 配置参数

    配置文件保存在以下路径,详细说明请参照表4。

    /apollo/modules/calibration/camera_camera_calibrator/conf/camera_camera_calibrtor.conf

    表4. 相机到相机标定程序配置项说明

    配置项说明
    long_image_topic长焦相机的图像topic
    short_image_topic广角相机的图像topic
    odometry_topic车辆定位topic
    ins_stat_topic车辆定位状态topic
    long_camera_intrinsics_filename长焦相机的内参文件路径
    short_camera_intrinsics_filename广角相机的内参文件路径
    init_extrinsics_filename初始外参文件路径
    output_path标定结果输出路径
    max_speed_kmh最大车速限制,单位km/h
  4. 输出内容

    • 外参文件: 长焦相机到广角相机的外参文件。
    • 验证参考图片:包括一张长焦相机图像、一张广角相机图像及一张长焦相机依据标定后的外参投影到广角相机的去畸变融合图像。

相机到多线激光雷达

  1. 运行方法

    使用以下命令来启动标定工具:

    cd /apollo/scripts
    bash sensor_calibration.sh lidar_camera
  2. 采集标定数据

    • 为避免时间戳不同步,在录制数据的时候,尽量将车辆进行慢速行驶,可以有效地缓解因时间差异所引起的标定问题。
    • 相机中需看到一定数量的投影点云,否则该工具将无法进行外参标定运算。因此,我们建议使用短焦距相机来进行相机-激光雷达的标定。
  3. 配置参数

    配置文件保存在以下路径,详细说明请参照表5。

    /apollo/modules/calibration/lidar_camera_calibrator/conf/lidar_camera_calibrtor.conf

    表5. 相机到多线激光雷达标定程序配置项说明

    配置项说明
    image_topic相机的图像topic
    lidar_topicLiDAR的点云topic
    odometry_topic车辆定位topic
    ins_stat_topic车辆定位状态topic
    camera_intrinsics_filename相机的内参文件路径
    init_extrinsics_filename初始外参文件路径
    output_path标定结果输出路径
    calib_stop_count标定所需截取的数据站数
    max_speed_kmh最大车速限制,单位km/h
  4. 输出内容

    • 外参文件:相机到多线激光雷达的外参文件。
    • 验证参考图片:两张激光雷达点云利用标定结果外参投影到相机图像上的融合图像,分别是依据点云深度渲染的融合图像,和依据点云反射值渲染的融合图像。

毫米波雷达到相机

  1. 运行方法

    使用以下命令来启动标定工具:

    cd /apollo/scripts
    bash sensor_calibration.sh radar_camera
  2. 采集标定数据

    • 请将车辆进行低速直线行驶,标定程序仅会在该条件下开始采集数据。
  3. 配置参数

    配置文件保存在以下路径,详细说明请参照表6。

    /apollo/modules/calibration/radar_camera_calibrator/conf/radar_camera_calibrtor.conf

    表6. 相机到毫米波雷达标定程序配置项说明

    配置项说明
    image_topic相机的图像topic
    radar_topicRadar的数据topic
    odometry_topic车辆定位topic
    ins_stat_topic车辆定位状态topic
    camera_intrinsics_filename相机的内参文件路径
    init_extrinsics_filename初始外参文件路径
    output_path标定结果输出路径
    max_speed_kmh最大车速限制,单位km/h
  4. 输出内容

    • 外参文件:毫米波雷达到短焦相机的外参文件。
    • 验证参考图片:将毫米波雷达投影到激光雷达坐标系的结果,需运行 radar_lidar_visualizer 工具。具体方法可参阅 标定结果验证 章节。

标定结果获取

所有标定结果均保存在配置文件中所设定的 output 路径下,标定后的外参以 yaml 格式的文件提供。此外,根据传感器的不同,标定结果会保存在 output 目录下的不同文件夹中,具体如表7所示:

表7. 标定结果保存路径

传感器外参保存路径
Short_Camera[output]/camera_params
Long_Camera[output]/camera_params
Radar[output]/radar_params

标定结果验证

当标定完成后,会在 [output]/validation 目录下生成相应的标定结果验证图片。下面会详细介绍每一类验证图片的基本原理和查看方法。

相机到相机标定

  • 基本方法:根据长焦相机投影到短焦相机的融合图像进行判断,绿色通道为短焦相机图像,红色和蓝色通道是长焦投影后的图像,目视判断检验对齐情况。在融合图像中的融合区域,选择场景中距离较远处(50米以外)的景物进行对齐判断,能够重合则精度高,出现粉色或绿色重影(错位),则存在误差,当误差大于一定范围时(范围依据实际使用情况而定),标定失败,需重新标定(正常情况下,近处物体因受视差影响,在水平方向存在错位,且距离越近错位量越大,此为正常现象。垂直方向不受视差影响)。

  • 结果示例:如下图所示,图2为满足精度要求外参效果,图3为不满足精度要求的现象,请重新进行标定过程。

图2 良好的相机到相机标定结果

图3 错误的相机到相机标定结果

相机到多线激光雷达标定

  • 基本方法:在产生的点云投影图像内,可寻找其中具有明显边缘的物体和标志物,查看其边缘轮廓对齐情况。如果50米以内的目标,点云边缘和图像边缘能够重合,则可以证明标定结果的精度很高。反之,若出现错位现象,则说明标定结果存在误差。当误差大于一定范围时(范围依据实际使用情况而定),该外参不可用。

  • 结果示例:如下图所示,图4为准确外参的点云投影效果,图5为有偏差外参的点云投影效果

图4 良好的相机到多线激光雷达标定结果

图5 错误的相机到多线激光雷达标定结果

毫米波雷达到相机

  • 基本方法:为了更好地验证毫米波雷达与相机间外参的标定结果,引入激光雷达作为桥梁,通过同一系统中毫米波雷达与相机的外参和相机与激光雷达的外参,计算得到毫米波雷达与激光雷达的外参,将毫米波雷达数据投影到激光雷达坐标系中与激光点云进行融合,并画出相应的鸟瞰图进行辅助验证。在融合图像中,白色点为激光雷达点云,绿色实心圆为毫米波雷达目标,通过图中毫米波雷达目标是否与激光雷达检测目标是否重合匹配进行判断,如果大部分目标均能对应匹配,则满足精度要求,否则不满足,需重新标定。

  • 结果示例:如下图所示,图6为满足精度要求外参效果,图7为不满足精度要求外参效果。

图6 良好的毫米波雷达到激光雷达投影结果

图7 错误的毫米波雷达到激光雷达投影结果

  • 注意事项:
    • 为了得到毫米波雷达目标和激光雷达点云融合的验证图像,系统会自动或手动调用毫米波雷达到激光雷达的投影工具(radar_lidar_visualizer)进行图像绘制和生成过程。该投影工具在启动时会自动载入毫米波雷达与相机的外参文件及相机与激光雷达的外参文件,因此在启动之前,需要先进行相应的标定工具或将两文件以特定的文件名放在相应路径中,以备工具调用。

    • 使用以下命令来启动 radar_lidar_visualizer 工具:

       cd /apollo/scripts
       bash sensor_calibration.sh visualizer
    • radar_lidar_visualizer 工具的配置文件在以下路径,详细说明请参照表8。

       /apollo/modules/calibration/radar_lidar_visualizer/conf/radar_lidar_visualizer.conf

      表8. 毫米波雷达到激光雷达投影工具配置项说明

      配置项说明
      radar_topicRadar的数据topic
      lidar_topicLiDAR的点云topic
      radar_camera_extrinsics_filename毫米波雷达到相机的外参文件
      camera_lidar_extrinsics_filename相机到激光雷达的外参文件
      output_path标定结果输出路径
    • 验证图片同样保存在 [output]/validation 目录下。

希望对你有帮助。

<think>好的,我现在需要帮助用户解决关于Dify循环实现的问题。首先,我需要明确用户的具体需求。他们提到“dify 循环实现”或“dify 如何处理循环”,但Dify本身可能没有直接称为“循环”的功能,所以需要结合现有文档中的信息来推断可能的解决方案。 根据用户提供的引用内容,Dify工作流中有迭代节点[^1]。这可能类似于编程中的循环结构,用于重复执行某个任务。例如,在处理列表数据或需要多次执行同一操作时,迭代节点可以派上用场。我需要详细解释迭代节点的配置和使用步骤,确保用户能够理解如何设置循环次数或遍历数据集。 另外,用户可能对如何处理循环中的错误或性能问题感兴趣。引用[2]提到在Dify中处理PEM文件的问题,这可能涉及在循环中正确处理数据格式,避免错误积累。需要提醒用户在循环中注意错误处理和资源管理,确保每次迭代的稳定性。 引用[3]中的例子展示了如何结合FastAPI和Selenium进行实时监控并生成GIF,这可能涉及循环截取浏览器内容。虽然Dify本身可能不直接控制这类循环,但可以通过外部脚本或定时任务触发工作流,模拟循环执行。这部分需要说明如何将外部循环机制与Dify结合使用。 接下来,我需要组织回答结构。首先介绍迭代节点的基本概念和配置步骤,然后讨论循环中的数据处理和错误处理,最后补充外部触发循环的方法。同时,生成相关问题以帮助用户进一步探索,比如优化循环性能或处理复杂数据结构。 需要确保回答符合格式要求,使用正确的中文表达,行内公式用$...$,独立公式用$$...$$,但当前问题不涉及数学公式,所以可能不需要使用。同时,引用标识要自然地添加到相关段落末尾,如、[^2]、[^3]。 最后,检查是否有遗漏点,比如Dify的其他循环相关功能或用户可能遇到的常见问题,确保回答全面且易于理解。</think>在Dify中处理循环逻辑主要通过**迭代节点**实现,以下是具体实现方式和应用场景的解析: ### 一、Dify循环实现机制 Dify通过**工作流设计器**中的迭代节点处理循环需求,其核心原理类似编程中的`for循环`。迭代节点可遍历以下数据类型: - 数组列表:`["A","B","C"]` - 字典集合:`{"key1":"value1", "key2":"value2"}` - 数值范围:通过`range()`函数生成序列 配置示例: ```python # 模拟迭代节点的数据输入 input_data = { "dataset": [1,2,3,4,5], "process_logic": "item * 2" # 对每个元素执行乘以2的操作 } ``` ### 二、迭代节点的关键配置步骤 1. **数据源绑定**:将数组/字典类型变量连接到迭代节点的输入端口 2. **循环变量命名**:设定当前元素的变量名(默认为`item`) 3. **子流程设计**:在迭代节点内部构建需要重复执行的逻辑模块 4. **结果聚合**:通过`outputs`收集所有迭代结果,支持数组或对象格式 $$ \text{总耗时} = \sum_{i=1}^{n}(单次迭代时间_i) + 系统开销 $$ ### 三、循环中的特殊处理 1. **错误中断控制**: - 启用`continueOnError`参数可跳过失败迭代 - 通过`try-catch`模块包裹敏感操作 2. **并行优化**: ```python # 伪代码示例 Parallel.forEach(dataset, lambda item: process(item)) ``` 3. **结果过滤**: ```python filtered = filter(lambda x: x%2==0, processed_results) ``` ### 四、应用场景案例 1. **批量文件处理**:遍历存储桶中的文件列表进行格式转换 2. **数据清洗**:对数据库查询结果集进行逐条校验 3. **API轮询**:定时循环调用第三方接口直到满足特定条件
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值