mesh分割算法(自己学习过程中记录,不全)

本文介绍了几种常见的三维模型分割算法,包括迭代聚类(如变分形状逼近VSA)、基于特征曲线的分割方法及区域增长算法等。重点讨论了各种算法的工作原理、应用场景及局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:总结肯定是不全的,当时是在学习过程中找和自己研究课题有正相关的才记录下来,其他可能好用的方法,但是对我近期做的事情不相关,在有限的时间内就没有做详细的记录。

一、迭代聚类:(基本和点云一致)

通常根据某种相似性度量标准,计算每个面或者顶点到簇质心的距离,将这些面或者顶点指定给相应集合,进行初始分类,然后后更新聚类初始状态,不断迭代。

可能适用的是:

变分形状逼近VSA(variational shape approximation)是一种基于k-means的迭代聚类算法。

《Variational shape approximation》 ,2004,ACM

(1.1)这篇文章就有一种曲面距离的度量标准。

在这里插入图片描述

(1.2)VSA算法还可以适用于网格简化,(根据重新排布法原理,可以一定程度上减少面片内部顶点,保留面片边界处顶点,从而实现网格简化操作。)

分割时的不足:VSA算法可能陷入局部最小和无限循环的问题中。
VSA效果
在这里插入图片描述
在这里插入图片描述

二、基于特征曲线的网格分割算法:

优先找到能够代表三维模型真实屋里结构的曲线,然后根据曲线进行分割。(关键就是利用曲率,将曲率大于设定阈值的点作为模型特征点,将特征点连接形成模型特征线,最后按照特征线进行分割)

在这里插入图片描述

三、区域增长算法:(和超体素的那个思路差不多)

基于区域生长的网络分割算法是一种局部贪婪算法,通过先依据某种集合信号量选定种子点,由种子点出发,向外生长延伸,不断并入相邻三角形,直至遇到模型边界停止生长,由此划分得到网格分割结果。

(利用的核心特征还是曲率和凹凸性)

四、基于动态网格分割:(暂不参考)

在这里插入图片描述

五、基于神经网络的mesh分割:(暂不参考)

MV-RNN,mesh-cnn
可参考链接:
https://blog.csdn.net/qq_41918369/article/details/108803156?spm=1001.2014.3001.5501

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值