注:总结肯定是不全的,当时是在学习过程中找和自己研究课题有正相关的才记录下来,其他可能好用的方法,但是对我近期做的事情不相关,在有限的时间内就没有做详细的记录。
一、迭代聚类:(基本和点云一致)
通常根据某种相似性度量标准,计算每个面或者顶点到簇质心的距离,将这些面或者顶点指定给相应集合,进行初始分类,然后后更新聚类初始状态,不断迭代。
可能适用的是:
变分形状逼近VSA(variational shape approximation)是一种基于k-means的迭代聚类算法。
《Variational shape approximation》 ,2004,ACM
(1.1)这篇文章就有一种曲面距离的度量标准。
(1.2)VSA算法还可以适用于网格简化,(根据重新排布法原理,可以一定程度上减少面片内部顶点,保留面片边界处顶点,从而实现网格简化操作。)
分割时的不足:VSA算法可能陷入局部最小和无限循环的问题中。
VSA效果:
二、基于特征曲线的网格分割算法:
优先找到能够代表三维模型真实屋里结构的曲线,然后根据曲线进行分割。(关键就是利用曲率,将曲率大于设定阈值的点作为模型特征点,将特征点连接形成模型特征线,最后按照特征线进行分割)
三、区域增长算法:(和超体素的那个思路差不多)
基于区域生长的网络分割算法是一种局部贪婪算法,通过先依据某种集合信号量选定种子点,由种子点出发,向外生长延伸,不断并入相邻三角形,直至遇到模型边界停止生长,由此划分得到网格分割结果。
(利用的核心特征还是曲率和凹凸性)
四、基于动态网格分割:(暂不参考)
五、基于神经网络的mesh分割:(暂不参考)
MV-RNN,mesh-cnn
可参考链接:
https://blog.csdn.net/qq_41918369/article/details/108803156?spm=1001.2014.3001.5501