decontX:单细胞转录组分析去除环境污染RNA

和之前双细胞去除一样,,单细胞转录组分析去除环境污染RNA也是一个可选的内容。为什么会出现这么一个问题呢,还是受限于目前的单细胞技术而已。通俗的来讲,在基于液滴的单细胞RNA-seq实验中,稀释液中总会存在一定量的背景mrna,例如你在裂解组织的时候,不不可能100%获取活性单细胞,总有一些细胞的裂解导致基因释放,这些mrna随细胞一起分布到液滴中,并随细胞一起测序。这就是污染得来源。那么目前也有很多的算法来推测合矫正。今天我们要说的是decontX,在我个人的使用中,我的感觉第一decontX使用后太方便了,非常的简单,第二则是我演示的数据中效果极好。当然了,具体问题还需要具体对待。

decontX官网教程:
Bioconductor - decontX
decontX github:
https://github.com/campbio/decontX

decontX使用需要知晓以下几个注意事项:
1、decontX的input文件可以是SingleCellExperiment object,也可以是单细胞count matrix。
2、decontX净化后矩阵是小数,在将其添加到Seurat之前须四舍五入为整数。

3、decontX的运行有两种方式,一种是直接跑,不提供背景。另外一种是使用包含空液滴的原始/液滴矩阵作为背景。一般情况没有这个。

虽然decontX步骤超级简单,但是为了大家方便使用,我们将这个过程包装成了一个函数。我们看看函数参数:只需要提供seurat obj和idents即可。

image.png

image.png

我们看看去除效果:

#注意,运行这个函数之后,得到的seurat对象中
#assay[“origCounts”]是我们最初的矩阵,没有经过矫正
#assay[“RNA”]是decontX矫正过的矩阵
#最后,污染分数储存在metadata-  seurat_obj$estConp

adj_scRNA <- runDecontX(seurat_obj = scRNA_ha,
                        idents = "celltype")

#根据contamination分数删除细胞,至于比例,没有明确的要求,可以按照实际数据处理来设定
adj_scRNA = adj_scRNA[,adj_scRNA$estConp < 0.15]
#对比下结果
DimPlot(adj_scRNA, label = T)+DimPlot(scRNA_ha, label = T)

image.png

image.png

对比两者效果,做测试decontX过滤的,右侧是原来的。我发现在这个数据中,去除的cell都是一些边缘化的细胞,或者散落在其他群的细胞,以及有一个Other,是新多出来的群。所以把我觉得不好的都去除了。当然了,这个要具体对待,不能盲目。好了,今天的内容就分享到这里了,希望对你有帮助!

### 单细胞测序中去除双细胞的方法与工具 在单细胞测序数据分析过程中,去除双细胞(doublets)是一个重要的预处理步骤。双细胞是指两个或多个细胞被错误地捕获到同一个液滴或孔中,从而导致数据污染。为了有效识别并移除这些双细胞,研究者开发了一系列方法和工具。 #### 方法概述 一种常用策略是基于模拟双细胞的分布特征来构建参考模型,并通过比较真实数据中的细胞表达模式与该模型之间的相似性来进行检测[^1]。这种方法假设真实的双细胞会表现出两种不同细胞类型的混合转录组特性。另一种思路则是利用生物学标记基因或者特定技术手段(如唯一分子标识符UMI计数)实现更精确的区分[^2]。 #### 工具介绍 以下是几种广泛使用的用于去除单细胞RNA-seq数据集中双细胞的计算工具: 1. **Scrublet** Scrublet 是一款专门设计用来预测和过滤掉scRNA-seq实验产生的doublet事件的Python包。它采用合成doublet建模的方式,在不依赖外部对照样本的情况下估计实际存在的doublet比例,并提供灵活参数调整选项以便适应不同类型的数据集需求[^3]。 ```python import scrublet as scr scrub = scr.Scrublet(sparse_counts_matrix) doublet_scores, predicted_doublets = scrub.scrub() ``` 2. **DoubletFinder** DoubletFinder 利用k-means聚类算法结合PCA降维后的空间结构信息寻找潜在的异常点作为候选doublet对象。此R软件包还允许用户自定义阈值以优化最终筛选效果[^4]。 3. **DecontX** DecontX 属于Cell Ranger官方支持的一个功能模块,主要针对 droplet-based 平台生成的大规模scRNAseq 数据进行去噪处理,其中包括对可能存在的cross-contamination 和 doublet 进行校正操作[^5]。 以上提到的各种解决方案各有优劣之处,具体选择取决于项目目标以及可用资源等因素考虑。 ### 注意事项 值得注意的是,尽管上述工具有助于减少由双细胞引起的偏差,但在某些情况下完全消除它们可能是不可能的任务;因此,在解释结果时仍需谨慎对待残留影响的可能性[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值