二、机器人视觉模型
机器人视觉系统的标定其实是获取摄像机坐标系(ICS)与机器人坐标系(RCS)之间转换关系的过程,在标定机器人视觉系统(Eye-to-Hand)之前,首先要对摄像机进行标定。通常摄像机镜头会存在径向、切向和偏心等畸变,因此需要选择合适的畸变模型对摄像机进行标定。工业镜头的畸变主要维径向畸变,可以用线性畸变模型表示。生活上使用的摄像头还会有切向和偏心等畸变,需要使用非线性模型。对于工业摄像头,如果使用非线性畸变模型,将会大大增加计算复杂度而且标定精度不会提高。因此本文在论述中采用线性畸变模型来标定机器人视觉系统。
张正友提出了基于单平面棋盘格的相机标定方法,该方法标定的精度高、只需一个平面棋盘格标定板,标定过程中相机要拍摄2张以上标定板图片,且不需知道标定板具体运动参数。
2.1摄像机成像原理
常见的工业相机成像模型,可以称为小孔成像模型。被拍摄景物穿过摄像机镜头,通过光轴中心点,会在成像平面形成比例缩小、左右和上下都相反的实像。其中摄像机光轴的中心点,指的是摄像机镜头的光心。为方便理解,可将工业相机的成像模型转化为如图1所示的小孔成像模型,相机的镜头可以被理解为一个小孔。
如图1所示,平面 Π1(世界坐标系)是被拍摄物体所在平面,摄像机的光轴中心点为Oc(摄像机坐标系原点),摄像机的成像平面为Π2′(图像坐标系平面), Π2 是摄像机等小孔成像相机模型等效成像平面。由摄像机的小孔成像模型可以知道,物体反射的光线经过摄像机的光学中心,在成像平面Π2′ 上呈现的物体图像,与原物体进行比较,方向相反,比例缩小。在对获取的数学图像进行信息处理时,可先将原图像等比例放大,并对图像进行反转,可用平面Π2 代替平面Π2′ 做一个等效处理,再对平面 Π2 上的等效像进行放大处理,便得到想要的数字图像。
2.2 摄像机标定原理
在相机的几何模型下,可以将三维物体的坐标转化为二维图像的坐标,通常需要建立以下几种坐标系:世界坐标系、图像坐标系、摄像机坐标系。其中,图像坐标系根据单位尺度的不同又可以分为图像像素坐标系和图像物理坐标系,两者区别在于图像像素坐标系以像素为单位尺度,图像物理坐标系是以物理长度为单位尺度。其标定模型如图所示。
图2 机器人视觉标定模型
图2中,(Oc,Xc,Yc,Zc)为摄像机坐标系(CCS),Oc为摄像机的投影中心,z轴与摄像机的主光轴重合;(Ow,Xw,Yw,Zw)为机器人坐标系(世界坐标系WCS);(Oi,Xi,Yi)为成像平面坐标系(IPCS);(Ou,Xu,Yu)为图像坐标系(ICS)。空间一点P在CCS下的坐标为P(xc,yc,zc);在WCS下的坐标为P(xw,yw,zw)。若不考虑畸变,则点P以透视投影在成像平面投影,投影点为Pn(xn,yn);若考虑径向畸变,镜头的畸变将导致P发生偏移,投影点为 (xi,yi)。
2.2.1 世界坐标系
摄像机能够存在于三维空间的任一位置,因此有必要在三维空间中建立一个坐标系,作为摄像机和景物的参照坐标系,称之为世界坐标系(XwOwYw)。假设成像点P(xw, yw, zW)为三维空间(世界坐标系)中的一个随机点,则世界坐标系(XwOwYw)和摄像机坐标系系(XcOcYc)之间存在如下的转换表达式:
式中: T 为 3×1 的平移向量;R 为 3×3 的正交旋转矩阵,满足的约束条件:
2.2.2 摄像机坐标系
摄像机坐标系 (XcOcYc) 是以相机的光心为坐标原点,Xc、Yc轴平行于图像物理坐标系X、Y轴,并取相机光轴为Zc轴建立的三维直角坐标系。由图2再结合三角测量原理,图像物理坐标系 (XOY) 与摄像机坐标系 (XcOcYc) 之间存在如下的转换表达式:
如果用齐次坐标和矩阵的形式实现,即:
2.2.3 图像坐标系
在图像坐标系中,假设 (u,v) 分别表示图像像素坐标系中的横、纵坐标,而 (u0,v0) 则表示像素坐标系中心点的位置坐标,dx、dy分别表示每个像素在图像物理坐标系x轴和y轴上的物理尺寸大小,那么,图像像素坐标系(XfOfYf)和图像物理坐标系(XOY)之间存在如下的转换表达式:








最低0.47元/天 解锁文章
755

被折叠的 条评论
为什么被折叠?



