一、本文介绍
本文记录的是基于 GhostNetV3 的 RT-DETR轻量化改进方法研究。GhostNetV3
的轻量模块采用重参数化方法,训练时为深度可分离卷积
和1×1卷积
添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现RT-DETR
的轻量化改进。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
本文记录的是基于 GhostNetV3 的 RT-DETR轻量化改进方法研究。GhostNetV3
的轻量模块采用重参数化方法,训练时为深度可分离卷积
和1×1卷积
添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现RT-DETR
的轻量化改进。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进