RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题

一、本文介绍

本文主要利用FreqFusion结构改进RT-DETR的目标检测网络模型FreqFusion结构针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器偏移量生成器自适应高通滤波器生成器。将FreqFusion应用于RT-DETR的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模型在复杂场景下对目标物体的检测精度与定位准确性。


专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

### RT-DETR改进方法 为了提升实时目标检测的效果,RT-DETR引入了多种创新机制来优化模型性能。具体来说: #### 双动态令牌混合器(D-Mixer) 双动态令牌混合器是一种新颖的设计,旨在更有效地融合全局和局部信息。通过这种方式,模型能够在更大范围内捕捉特征,并增强其归纳偏置能力[^3]。 这种设计允许模型根据输入数据自适应调整关注区域,从而提高对复杂场景的理解能力和鲁棒性。相比于传统的方法,这种方法可以显著增加有效感受野(ERF),进而改善整体检测精度。 ```python class D_Mixer(nn.Module): def __init__(self, config): super(D_Mixer, self).__init__() # 定义用于处理全局和局部信息的组件 def forward(self, x): global_info = self.global_mechanism(x) local_info = self.local_mechanism(x) mixed_output = torch.cat((global_info, local_info), dim=1) return mixed_output ``` ### 最新研究进展 最新的研究表明,采用双动态令牌混合器后,RT-DETR系列模型在多个公开测试集上的表现均有明显进步。特别是在COCO val2017数据集中,不同版本的RT-DETR取得了如下成绩: - **RT-DETR-L**: 实现了53.0%的AP以及114 FPS的速度; - **RT-DETR-X**: 达到了更高的54.8% AP 和 74 FPS 的速度; - **RT-DETR-R50**: 提供了53.1% AP 和 108 FPS 的平衡选项; - **RT-DETR-R101**: 则进一步提升了至54.3% AP 和同样74 FPS 的速度[^1]。 这些结果显示,在不牺牲速度的前提下,RT-DETR能够提供更加精确的目标检测结果,成为该领域内新的标杆之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值