一、本文介绍
本文主要利用FreqFusion结构改进RT-DETR的目标检测网络模型。FreqFusion结构
针对传统特征融合在密集图像预测中存在的问题,创新性地引入自适应低通滤波器生成器
、偏移量生成器
和自适应高通滤波器生成器
。将FreqFusion
应用于RT-DETR
的改进过程中,能够使模型在处理复杂场景图像时,更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达,进而提升模型在复杂场景下对目标物体的检测精度与定位准确性。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进