目录
1.前言
笔者查阅有关水下视觉测量相关论文,发现在水下模型的建立过程中,总避免不了需要解一个参数,即光心到折射面的距离。通过查阅若干文献,介绍两种求光心到折射面的几种方法。
2.基于费马原理求解

如图所示,目标点到折射面的距离z是在空气中测量的。以光轴与折射面的交点为原点,折射面与光轴为xy轴建立坐标系,则水中目标点的径向坐标为。从该点发出的射线成像到相面的一点。在这个轨迹中,射线通过界面上的一点到轴的距离为
。
的值可以用费马原理计算:两点之间的射线路径是在最短时间内经过的。
考虑到水的折射率n使光在介质中的速度变慢,则光程长度为:
其中d为折射面到光心的距离。由费马原理,得:
由相似三角形可知
其中为射线对应的图像像素的径向坐标(未考虑畸变),f为相机在空气中的焦距。将上式代入
的关系得:
由此得到了目标点坐标和图像坐标间的关系。假设水的折射率n已知,则该式为d和f的函数。将上式写成如下形式:
可以通过测距仪得到。或者可以在摄像机上安装两个固定角度的水下激光器使其在特定的距离汇聚成一点来实现恒定的
。但
和d不能直接测量,需要通过标定来解决。
在标定靶标上选取特定点可以得到已知的几条线段的距离,线段与折射面和相面平行(保证
恒定)。设点的方位角为
,选取两个点,其对应的图像坐标为
和
。由于存在畸变,在图像中线段可能发生弯曲,但在世界坐标系中仍然是直线,如下图所示。

两个点对应的世界径向坐标为:
其中为畸变补偿后的坐标。根据余弦定理,线段的长度应满足:
由此可以建立关系:
等式说明,水下使用靶标标定时,使用图像提供的两个像素坐标,像素点对应靶标上点间的距离,空气中标定的相机内参f,及靶标点到折射面的距离,可以求得光心到折射面的距离d。我们可以进行多次测量,建立多个方程,进行最小二乘拟合,使d的求解更加准确。
注意到该求解过程为非线性求解,若相机未经过空气中的标定,我们可以使用SVP模型的等效焦距来得到
的初始估计
,并作为参数之后进行优化。SVP模型中,在出射角很小的时候,正弦值约等于角度值,有snell定律可以求得等效焦距
,故有
。(关于SVP中等效焦距的具体解释请见笔者的上一篇文章)。
注意到使用单一对象标定求解时可能出现如下问题:

图A显示了一个拟合问题:一个物体及其图像投影。对和
的最初猜测与物理模型不符。图B和C显示了对同一物体及其相应投影的两种可能的解对
。从图D可以看出,错误的
值也可以得到解,
和
的值不同。其中,
的估计依赖于
;
的每一个值,都有一个合适的估计
。为了得到准确的d和f,我们可以测量多条线,也可以改变距离对同一条线多次测量。

上图A和B,C和D分别代表两种标定d和f的优化手段。
笔者认为,该标定方法具有一定的灵活性,可以作为某一固定参数,检测多个目标,建立多个方程来求解而无需先验,但需要其他手段保证其在标定中固定,避免出现新的未知数。
3.基于共面约束求解
文献分析了n层折射平面的情况,为简单起见,我们仅分析n=1的情况。

设A为摄像机光轴的方向向量,π为包含光轴和给定相机光线的折射平面(POR),n为π的法线。根据Snell定律,入射光线、法线和折射光线位于任何折射边界的同一平面上,因此所有光路都在π平面上,出射光线与光轴相交。设P为靶标世界坐标系的目标点,由R和t变换到摄像机坐标系,则该点RP+t位于平面π上。代表了每段光路的方向向量。则对每个P点满足共面约束:
其中为POR的法向量。共面约束与层数n无关,仅取决于光轴和相机位姿。
设为A的反对称矩阵,则共面约束可以写成如下形式:
其中,
由于E和本质矩阵十分相似,可以借鉴本质矩阵5点法来估计轴。给定8个点,则有:
其中B为的矩阵,秩为8;
为Kronecker积运算,P(i)为对应的第i个世界坐标系的三维坐标。通过上式求解得到E和s,再由
估计A。
如果A是一个m×n的矩阵,而B是一个p×q的矩阵,克罗内克积则是一个mp×nq的分块矩阵
在标定过程中,光轴与世界坐标系的Z轴重合,得到方程:
其中E和s如下:
选取靶标上至少五个点,求解E和s。E的第三列通det(E)=0和旋转矩阵的单位正交性得到。由于靶标世界坐标系上无Z轴分量,假设
α为放大因子,由平面折射约束(FRC)有:
其中为
在POR平面投影得到的二维向量,
,
,
即光心到折射面的距离。采用大于两个靶标点,利用最小二乘解即可解出α和
。
Flat Refraction Constraint(FRC)
设[v0(i),v1(i),…,vn(i)]表示对应光路每段的方向向量。最后折射的光线vn应平行于变换后的3D点RP+t与最后一层折射点qn的连线。因此,应满足下面的平面折射约束(FRC):
设
表示POR上的正交坐标系,
为光轴方向。对给定摄像机射线
,
.设P位于摄像机坐标系的点
在POR上的投影为
其中
,
对于每个对应,n层系统在其折射平面上的FRC如下所示:
其中,
代入FRC得
4.参考文献
[1]T. Treibitz, Y. Schechner, C. Kunz and H. Singh, "Flat Refractive Geometry," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 51-65, Jan. 2012, doi: 10.1109/TPAMI.2011.105.
[2]A. Agrawal, S. Ramalingam, Y. Taguchi and V. Chari, "A theory of multi-layer flat refractive geometry," 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, pp. 3346-3353, doi: 10.1109/CVPR.2012.6248073.
[3]刘涛,王宁宁,张熠,艾尚茂.一种水下运动物体三维轨迹视觉测量方法[J].图学学报,2019,40(05):908-914.