YOLOV8如何训练自己的图片分类模型

本文介绍了如何使用YOLO8进行81类水果图片分类,包括准备ImageNet格式数据集,配置YOLO8运行环境,以及使用Python脚本train.py进行模型训练。训练完成后,会在runs文件夹中找到训练记录和相关指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLO8不仅仅可以胜任目标检测任务,目前YOLO8还支持图片分类、实例分割、人体关键点检测。本篇文章介绍如何使用YOLO8训练一个自己的图片分类模型。 YOLO8训练目标检测模型的方法参见本人主页的另外一篇文章:如何使用YOLOV8训练自己的目标检测模型

首先准备好ImageNet格式的数据集,我这里以81类水果图片分类数据集为例。ImageNet数据集应该具有一下目录结构

train
├── 类别1

            |——图片1

            |——图片2

            |——......
└── 类别2

            |——图片1

            |——图片2

            |——......

........

val
├── 类别1

            |——图片1

            |——图片2

            |——......
└── 类别2

            |——图片1

            |——图片2

            |——......

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

城南皮卡丘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值