EfficientNet模型的完整细节

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

导读

 

本文介绍了一种高效的网络模型EfficientNet,并分析了 EfficientNet B0 至B7的网络结构之间的差异。

我在一个Kaggle竞赛中翻阅notebooks,发现几乎每个人都在使用EfficientNet 作为他们的主干,而我之前从未听说过这个。

谷歌AI在这篇文章中:https://arxiv.org/abs/1905.11946介绍了它,他们试图提出一种更高效的方法,就像它的名字所建议的那样,同时改善了最新的结果。一般来说,模型设计得太宽,太深,或者分辨率太高。刚开始的时候,增加这些特性是有用的,但很快就会饱和,然后模型的参数会很多,因而效率不高。在EfficientNet中,这些特性是按更有原则的方式扩展的,也就是说,一切都是逐渐增加的。

478b4e0522ab37f5f6b984a6cb2cc74d.png

不明白发生了什么?不要担心,一旦看到了架构,你就会明白了。但首先,让我们看看他们得到了什么结果。

05b049d4e2d009314d41a111f7f2572a.png

由于参数的数目相当少,这个模型族是非常高效的,也提供更好的结果。现在我们知道了为什么这些可能会成为标准的预训练模型,但是缺少了一些东西。

共同之处

首先,任何网络都以它为主干,在此之后,所有对架构的实验都以它为开始,这在所有8个模型和最后的层中都是一样的。

0e116a39c072fbf96babe3079c7718de.png

之后,每个主干包含7个block。这些block还有不同数量的子block,这些子block的数量随着EfficientNetB0到EfficientNetB7而增加。要可视化模型层,代码如下:

!pip install tf-nightly-gpu

import tensorflow as tf

IMG_SHAPE = (224, 224, 3)
model0 = tf.keras.applications.EfficientNetB0(input_shape=IMG_SHAPE, include_top=False, weights="imagenet")
tf.keras.utils.plot_model(model0) # to draw and visualize
model0.summary() # to see the list of layers and parameters

如果你计算EfficientNet-B0的总层数,总数是237层,而EfficientNet-B7的总数是813层!!但不用担心,所有这些层都可以由下面的5个模块和上面的主干组成。

b30f86c3fd730f7f9c5b9d825c8ee4f1.png

我们使用这5个模块来构建整个结构。

  • 模块1 — 这是子block的起点。

  • 模块2 — 此模块用于除第一个模块外的所有7个主要模块的第一个子block的起点。

  • 模块3 — 它作为跳跃连接到所有的子block。

  • 模块4 — 用于将跳跃连接合并到第一个子block中。

  • 模块5 — 每个子block都以跳跃连接的方式连接到之前的子block,并使用此模块进行组合。

这些模块被进一步组合成子block,这些子block将在block中以某种方式使用。

20fc10f4c96ae4e674e19e93ef016e1e.png

  • 子block1 — 它仅用于第一个block中的第一个子block。

  • 子block2 — 它用作所有其他block中的第一个子block。

  • 子block3 — 用于所有block中除第一个外的任何子block。

到目前为止,我们已经指定了要组合起来创建EfficientNet模型的所有内容,所以让我们开始吧。

模型结构

EfficientNet-B0

78bd4c10f0f262e65002f7e6435cf9d6.png

EfficientNet-B0架构。(x2表示括号内的模块重复两次)

EfficientNet-B1

2e03c41603e9dc931e59062d04065441.png

EfficientNet-B1的结构

EfficientNet-B2

它的架构与上面的模型相同,唯一的区别是特征图(通道)的数量不同,增加了参数的数量。

EfficientNet-B3

3dca6554a31cca610d65a3be18173ec2.png

EfficientNet-B3的结构

EfficientNet-B4

87cd91aa4959366ccfd01cbf21887a29.png

EfficientNet-B4的结构

EfficientNet-B5

5b3cd23aa226a0d3efd91423073e0494.png

EfficientNet-B5的结构

EfficientNet-B6

7b178e2016b92603cddce339ac83db99.png

EfficientNet-B6的结构

EfficientNet-B7

e0f8e09f5c18abff0a2b06529fb3a60e.png

EfficientNet-B7的结构

很容易看出各个模型之间的差异,他们逐渐增加了子block的数量。如果你理解了体系结构,我鼓励你将任意的模型打印出来,并仔细阅读它以更彻底地了解它。下面的表表示了EfficientNet-B0中卷积操作的内核大小以及分辨率、通道和层。

a0a043f258895153753f2856fdb7c945.png

此表已包含在原始论文中。对于整个模型族来说,分辨率是一样的。我不确定卷积核的大小是否改变了。层的数量已经在上面的图中显示了。通道数量是不同的,它是根据从每个型号的摘要中看到的信息计算出来的,如下所示:

e64eb56c0320ce8559f6b3a0589b94c4.png

在结束之前,我附上了另一个图像,来自它的研究论文,显示了它与其他的SOTA的performance的比较,还有减少的参数的数量和所需的FLOPS。

a12c6efccec2701b27a6355b5726d39b.png

 
 

好消息!

小白学视觉知识星球

开始面向外开放啦👇👇👇

 
 

0e0f7674cdeaa9a99f23840021179871.jpeg

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
### EfficientNet-B4 代码实现 为了实现 EfficientNet-B4 模型,可以利用 `efficientnet-pytorch` 库中的简便方法来获取预训练模型及其参数。具体来说,可以通过调用 `from_hubconf()` 函数并传入相应的模型名称字符串 'efficientnet-b4' 来完成这一操作[^1]。 ```python from efficientnet_pytorch import EfficientNet # 加载 EfficientNet-B4 预训练模型 model = EfficientNet.from_pretrained('efficientnet-b4') print(model) ``` 如果希望自定义最后一层以便适应特定分类任务,则可以在加载基础模型后修改其全连接层结构。下面展示了如何调整该网络的最后一层以匹配新的类别数目: ```python import torch.nn as nn class CustomEfficientNet(nn.Module): def __init__(self, class_num, weights=None): super(CustomEfficientNet, self).__init__() # 创建基本模型实例 base_model = EfficientNet.from_name('efficientnet-b4') if weights is not None: state_dict = torch.load(weights) base_model.load_state_dict(state_dict) # 替换最后的全连接层 num_ftrs = base_model._fc.in_features base_model._fc = nn.Linear(num_ftrs, class_num) self.model = base_model def forward(self, x): return self.model(x) device = "cuda" if torch.cuda.is_available() else "cpu" custom_model = CustomEfficientNet(class_num=10).to(device) # 假设有10类目标 ``` 上述代码片段不仅实现了 EfficientNet-B4 的初始化过程,还提供了扩展此架构的方法,使得能够针对不同的应用场景灵活调整输出维度[^3]。 #### 可视化模型层次结构 对于想要更深入了解模型内部工作原理的研究人员而言,还可以借助 TensorFlow 或其他工具包绘制出整个神经网络图谱。这里给出一段用于展示 EfficientNet B系列各版本(含B4)整体框架以及统计每层参数量的样例程序[^4]: ```python !pip install tf-nightly-gpu import tensorflow as tf IMG_SHAPE = (224, 224, 3) model_b4 = tf.keras.applications.EfficientNetB4( input_shape=IMG_SHAPE, include_top=False, weights="imagenet") tf.keras.utils.plot_model(model_b4, to_file='model_b4.png', show_shapes=True) model_b4.summary() ``` 这段脚本会安装必要的依赖项,并创建一个不带顶部密集层的 EfficientNet-B4 实例;接着保存一张描述模型拓扑关系的图片至当前目录下名为 `model_b4.png` 文件中,同时打印出详细的分层信息概览表单。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值