Variational Adversarial Defense: A Bayes Perspective for Adversarial Training
题目:变分对抗性防御:对抗性训练的贝叶斯视角
作者:Chenglong Zhao; Shibin Mei; Bingbing Ni; Shengchao Yuan; Zhenbo Yu; Jun Wang
摘要
近年来,针对对抗性攻击的防御方法层出不穷。然而,这些方法普遍缺乏足够的理论保证,导致两个问题:首先,必要的对抗性训练样本的缺乏可能会削弱正常梯度的反向传播,从而导致过拟合并潜在的梯度掩盖问题。其次,逐点的对抗性采样为对抗性数据提供了不充分的支持区域,因此无法形成强大的决策边界。为了解决这些问题,我们提供了理论分析,揭示了对抗性训练中鲁棒准确性与训练集复杂性之间的关系。结果,我们提出了一种名为变分对抗性防御(Varia