TPAMI 2024 | 利用深度学习中的记忆效应进行噪声标签学习的方法探索

论文信息

题目:Searching to Exploit Memorization Effect in Deep Learning with Noisy Labels
利用深度学习中的记忆效应进行噪声标签学习的方法探索
作者:Hansi Yang, Quanming Yao, Bo Han, James T. Kwok
源码链接:https://github.com/LARS-research/S2E

论文创新点

  1. 提出双层优化方法自动设计样本选择计划,利用记忆效应提高鲁棒性。
  2. 引入半监督学习算法处理噪声标签,提升模型泛化能力。
  3. 开发基于牛顿方法和立方正则化的优化算法,实现快速有效的搜索策略。

摘要

在噪声标签的鲁棒学习中,样本选择方法非常流行。然而,如何正确控制选择过程,以便深度网络能够从记忆效应中受益,这是一个难题。在本文中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值