Adaptive Cross-Modal Transferable Adversarial Attacks From Images to Videos
题目:自适应跨模态可转移对抗性攻击:从图像到视频
作者:Zhipeng Wei; Jingjing Chen; Zuxuan Wu; Yu-Gang Jiang
摘要
对抗性样本的跨模型迁移性使得黑盒攻击变得切实可行。然而,它通常需要访问与黑盒模型相同模态的输入才能获得可靠的迁移性。遗憾的是,在安全关键场景中,数据集的收集可能很困难。因此,开发跨模态攻击以欺骗具有不同模态输入的模型将对现实世界的深度神经网络(DNN)应用构成高度威胁。上述考虑激发了我们对对抗性样本跨模态迁移性的研究。特别是,我们旨在从白盒图像模型生成视频对抗性示例,以攻击视频CNN和ViT模型。我们引入了基于观察的Image To Video (I2V)攻击,即图像和视频模型共享类似的低级特征。对于每个视频帧,I2V通过