TPAMI 2024 | 用于少样本细粒度分类的双向集成特征重构网络

299 篇文章 21 订阅 ¥49.90 ¥99.00

Bi-Directional Ensemble Feature Reconstruction Network for Few-Shot Fine-Grained Classification

题目:用于少样本细粒度分类的双向集成特征重构网络

作者:Jijie Wu; Dongliang Chang; Aneeshan Sain; Xiaoxu Li; Zhanyu Ma; Jie Cao; Jun Guo; Yi-Zhe Song
源码:https://github.com/PRIS-CV/BiEN


摘要

细粒度少样本图像分类的主要挑战在于仅使用少量标记样本学习具有更高类间和更低类内变化的特征表示。然而,传统的少样本学习方法不能简单地应用于这种细粒度设置——一个快速的初步研究表明,它们实际上推动了相反的结果(即,更低的类间变化和更高的类内变化)。为了缓解这个问题,先前的工作主要使用支持集来重建查询图像,然后利用度量学习来确定其类别。经过仔细检查,我们进一步揭示了这种单向重建方法只有助于增加类间变化,并且不有效地处理类内变化。在本文中,我们引入了一种双向

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值