Bi-Directional Ensemble Feature Reconstruction Network for Few-Shot Fine-Grained Classification
题目:用于少样本细粒度分类的双向集成特征重构网络
作者:Jijie Wu; Dongliang Chang; Aneeshan Sain; Xiaoxu Li; Zhanyu Ma; Jie Cao; Jun Guo; Yi-Zhe Song
源码:https://github.com/PRIS-CV/BiEN
摘要
细粒度少样本图像分类的主要挑战在于仅使用少量标记样本学习具有更高类间和更低类内变化的特征表示。然而,传统的少样本学习方法不能简单地应用于这种细粒度设置——一个快速的初步研究表明,它们实际上推动了相反的结果(即,更低的类间变化和更高的类内变化)。为了缓解这个问题,先前的工作主要使用支持集来重建查询图像,然后利用度量学习来确定其类别。经过仔细检查,我们进一步揭示了这种单向重建方法只有助于增加类间变化,并且不有效地处理类内变化。在本文中,我们引入了一种双向