一文看尽2024年主流11注意力机制

注意力机制已经成了模型设计的基础架构,现在模型里没个Attention都不好意思发出来。

从注意力机制发布到今天,学术界一直在对Attention进行各种魔改。魔改后的Attention能够提升模型的表达能力增强跨模态能力和可解释性,以及优化模型大小与效率

最重要的一点,很多注意力模块都是即插即用的。我们可以在自己的模型里用学术大牛的注意力模块,这样再做实验写论文绝对是事半功倍了。

近期,包括缩放点积注意力、多头注意力、交叉注意力、空间注意力、通道注意力等在内的11种主流注意力机制都有许多创新研究。今天分享112个11种主流注意力机制的创新研究,最新更新到24年9月。最新的创新思路非常适合大家用在实验中!

112个11种主流注意力机制的创新研究,paper和代码都帮大家下载整理好了。欢迎扫码领取。

1b21af080cf486f10c50ffcb39d661e0.png

扫码领112个11种主流注意力机制

创新研究paper和代码

6ef95709b884a36b6832033013182320.jpeg

缩放点积注意力

  • 5.Sep.2024—LMLT:Low-to-high Multi-Level Vision Transformer for Image Super-Resolution

  • 4.Sep.2024—MobileUNETR:A Lightweight End-To-End Hybrid Vision Transformer For Efficient Medical Image Segmentation

  • 4.Sep.2024—More is More Addition Bias in Large Language Models

  • 4.Sep.2024—LongLLaVA:Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture

......

130d5d0b0809f7a7a1da80ca3c0224f6.jpeg

4e924b769d3149d35fc6f51dae24095e.png

扫码领112个11种主流注意力机制

创新研究paper和代码

多头注意力

  • 4.Sep.2024—Multi-Head Attention Residual Unfolded Network for Model-Based Pansharpening

  • 30.Aug.2024—From Text to Emotion: Unveiling the Emotion Annotation Capabilities of LLMs

  • 25.Jun.2024—Temporal-Channel Modeling in Multi-head Self-Attention for Synthetic Speech Detection

  • 14.May.2024—Improving Transformers with Dynamically Composable Multi-Head Attention

......

d1e975b692aec6baad9202df7d724035.jpeg

2602b27224fc478e54723285cf9730fb.png

扫码领112个11种主流注意力机制

创新研究paper和代码

步幅注意力

  • 25.Aug.2024—Vision-Language and Large Language Model Performance in Gastroenterology: GPT, Claude, Llama, Phi, Mistral, Gemma, and Quantized Models

  • 21.Aug.2024—Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer

  • 16.Aug.2024—Fine-tuning LLMs for Autonomous Spacecraft Control: A Case Study Using Kerbal Space Program

  • 15.Aug.2024—FuseChat Knowledge Fusion of Chat Models

......

932a2b105099aed83f2166d0d76a71d6.jpeg

683dce1fb4ed0c95e7e30a8d2103f669.png

扫码领112个11种主流注意力机制

创新研究paper和代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值