医图论文 CVPR‘24 | 多模态医学图像配准的模态无关结构图像表示学习

论文信息

题目:Modality-Agnostic Structural Image Representation Learning for Deformable Multi-Modality Medical Image Registration
多模态医学图像配准的模态无关结构图像表示学习
作者:Tony C. W. Mok, Zi Li, Yunhao Bai, Jianpeng Zhang, Wei Liu, Yan-Jie Zhou, Ke Yan, Dakai Jin, Yu Shi, Xiaoli Yin, Le Lu, Ling Zhang

论文创新点

  1. 自监督深度结构表示学习:作者提出了一种新的自监督深度结构表示学习方法,用于多模态图像配准。这种方法能够从独立的医学图像中提取深度结构图像表示,无需解剖学描绘或完全对齐的训练图像对</
### 多模态医学图像分割实例 多模态医学图像分割是指利用多种成像模式的数据(如MRI、CT等),通过融合不同模态的信息来提高分割精度的技术。这种方法能够提供更丰富的解剖结构信息,有助于改善诊断效果。 #### 基于弱监督深度学习的方法 一种常见的做法是在有限标注数据条件下应用弱监督策略进行训练。文献中提到,有研究者综述了基于弱监督深度学习医学图像分割方法[^1]。这类技术可以减少对大量高质量标签的需求,从而降低成本并加速开发进程。 #### 跨模态与联合学习框架 另一个重要方向是跨模态之间的语义匹以及对象共分割的学习机制。具体来说,在CVPR 2019的一篇论文中介绍了如何同时完成这两个任务——即展示、匹和分割(Show, Match and Segment)[^3]。该工作展示了如何有效地关联来自不同源但描述相同区域或器官类型的影像资料,并据此构建更加鲁棒性的模型。 #### 可变形卷积的应用案例 对于特定场景下的复杂形变处理,可变形卷积提供了强大的工具支持。例如,在某些情况下,当目标形状发生较大变化时,传统CNN可能难以捕捉这些动态特性;而采用带有自适应偏移参数的卷积操作,则可以在一定程度上缓解此类难题。此概念也被引入到了疗领域内的各种应用场景之中,比如用于改进心脏轮廓跟踪或是肿瘤边界界定等方面的工作[^4]。 ```python import torch.nn as nn class DeformableConvLayer(nn.Module): def __init__(self, inc=64, outc=64, kernel_size=3, padding=1, stride=1, bias=None, modulation=False): super().__init__() self.kernel_size = (kernel_size,kernel_size) ... def forward(self,x): offset = ... # 计算偏移量 output = deform_conv(x,offset,...) # 应用可变形卷积 return output ``` 上述代码片段定义了一个简单的可变形卷积层类`DeformableConvLayer`,可用于实现灵活的空间采样位置调整功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值