论文信息
题目:Adaptive Learning for Dynamic Features and Noisy Labels
自适应动态特征与噪声标签学习
作者:Shilin Gu, Chao Xu, Dewen Hu, Chengjing Hou
源码链接:https://github.com/ChenpingHou/ALDN.git
论文创新点
- 提出了一个两阶段算法ALDN,通过修改最优传输方法将历史模型映射到当前特征空间,解决了动态特征与噪声标签耦合的问题。
- 引入了直接和间接一致性约束,利用先验模型辅助噪声转移矩阵的估计和模型训练,提升了模型在噪声环境下的鲁棒性。
- 提供了理论保证,证明了ALDN在噪声标签下的风险最小化边界,并通过实验验证了其在不同数据集和实际应用中的有效性。
摘要
在复杂和开放的环境中应用当前的机器学习算法仍然具有挑战性,尤其是当不同的变化元