TPAMI 2025 | 自适应动态特征与噪声标签学习(一)

论文信息

题目:Adaptive Learning for Dynamic Features and Noisy Labels
自适应动态特征与噪声标签学习
作者:Shilin Gu, Chao Xu, Dewen Hu, Chengjing Hou
源码链接:https://github.com/ChenpingHou/ALDN.git

论文创新点

  1. 提出了一个两阶段算法ALDN,通过修改最优传输方法将历史模型映射到当前特征空间,解决了动态特征与噪声标签耦合的问题。
  2. 引入了直接和间接一致性约束,利用先验模型辅助噪声转移矩阵的估计和模型训练,提升了模型在噪声环境下的鲁棒性。
  3. 提供了理论保证,证明了ALDN在噪声标签下的风险最小化边界,并通过实验验证了其在不同数据集和实际应用中的有效性。

摘要

在复杂和开放的环境中应用当前的机器学习算法仍然具有挑战性,尤其是当不同的变化元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值