特供版RTX 5090D被曝不能「炼丹」!AI算力3秒锁死,不支持多GPU配置。。。

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

转载自:新智元 | 编辑:泽正 好困

【导读】英伟达针对中国市场即将发售的RTX 5090D被曝出无法「炼丹」,3秒即可自动锁死算力。而且也不再支持多卡服务器配置与超频。该显卡或成「笼中金雀」,只能供游戏党细细赏玩了。

就在刚刚,最新爆料称,中国特供版的RTX 5090D不能「炼丹」!

根据Chiphell网友「omonob」实测,RTX 5090D不仅把功耗、频率等参数通通锁死,而且一旦检测到用户在训模型,「3秒」后就会自动锁死算力。

此外,最重要也是对AI应用打击最大的一点是——无法进行多GPU配置。

042a17f15b08840872bbe0719e0d7d63.png

2195b49af5954943a200db066fc8d893.png

「笼中金雀」5090D,游戏可以AI不行


RTX D系列是英伟达专门定制的显卡产品线,旨在符合美国基于显卡性能的出口管制规定。

由于上一代RTX 4090性能过强,无法合法出口到中国,英伟达不得不推出性能略低的RTX 4090D以符合规定。而RTX 5090D便是RTX 4090D的继任者。

RTX 5090D采用4纳米工艺,基于GB202图形处理器。

共搭载21,760个CUDA核心,采用32GB GDDR7显存,位宽高达512-bit。这些都较上代提升了33%。

此外,功耗也提升了27%,达到了575W。

1780036a817457f53794daa373c8c6a6.png

虽然英伟达在RTX 5090上不得不采取类似策略来应对出口限制,但这次对于RTX 5090D的处理方式却有所不同。

上一代RTX 4090D相比标准版RTX 4090,主要是直接降低硬件的规格,包括减少12.8%的CUDA核心、降低5.9%的最大功耗,以及调整基础频率。

而这次的RTX 5090D,英伟达却采取了不同做法:

  • 保留满血版RTX 5090的全部规格,包括基础频率和加速频率

  • 将AI性能降低29%——从3,352 TOPS降至2,375 TOPS

在DLSS 4的加持下,RTX 5090D在如赛博朋克2077、黑神话悟空、生成式AI等游戏中的表现,都达到了RTX 4090D的2倍之多。

249fa9c70952757de6f544b87a43f257.png

RTX 5090D与RTX 4090D在游戏与生成式AI应用方面的性能比较

但正如开篇提到的,相比于上一代RTX 4090D,RTX 5090D的功耗和频率都被彻底锁死。这也意味着无法对其进行超频,以弥补性能上与RTX 5090的差距。

1d4481038841b0e417e65ea5eb89a280.png

RTX 5090D与RTX 4090D的配置参数对比

多卡配置服务器集群「已成云烟」

同时,这位Chiphell用户明确指出,RTX 5090D无法通过在线或云端方式进行调整或操作,更无法在多显卡设置中运行。据称,英伟达将这一限制深入锁定在「Linux系统的底层」。

虽然该用户没有详细说明安装其他显卡时RTX 5090D的具体表现,但可以确定的是,RTX 5090D至少无法与其他显卡协同处理任何计算任务。

这意味着国内搭建服务器集群来满足AI需求时,RTX 5090D即便性能比GeForce RTX 4090D提升不少,但是也无法实现这个多卡搭建服务器的任务。

总之,英伟达的这些限制措施是否真能奏效,仍需留待上市后「各路豪杰」的检验。

参考资料:

https://www.tomshardware.com/pc-components/gpus/china-tailored-rtx-5090d-has-ai-and-cryptomining-limiters-multi-gpu-config-is-also-locked

https://www.chiphell.com/thread-2666404-1-1.html

https://www.chiphell.com/thread-2666266-6-1.html

 
 

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。


下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。


下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。


交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~
关于 `unsloth 5090D` 的具体技术规格、使用说明以及驱动下载的信息,在当前提供的引用内容中并未提及相关内容。然而,可以从其他角度分析并提供可能的相关信息。 --- ### 关于 unsloth 和其相关工具 `unsloth` 是一个开源项目,通常用于加速机器学习框架中的某些操作,尤其是在 GPU 加速环境中优化性能。根据引用的内容[^3],可以看到它被集成到一些微调大型语言模型的工作流中: ```bash !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" ``` 这表明可以通过 pip 工具安装 `unsloth` 并支持特定的功能扩展(如 `[colab-new]`)。虽然未提到具体的硬件型号 `5090D`,但可以推测该硬件可能是与 NVIDIA CUDA 或者类似的计平台兼容的设备。 --- ### 可能的技术规格和驱动需求 对于类似 `5090D` 这样的硬件设备,以下是常见的 IT 技术信息方向及其关联性: #### 1. **CUDA 支持** 如果 `5090D` 是一种基于 NVIDIA 架构的显卡,则需要确认其对应的 CUDA 本支持情况。例如,引用中提到了 CUDA 驱动的重要性[^1]: > “cuda的驱动要安装好……” 因此,建议先验证目标硬件是否能够运行最新的 CUDA 库本,并按照官方文档完成驱动程序更新。 #### 2. **驱动下载途径** 针对 NVIDIA 显卡系列,推荐访问官方网站获取最新驱动文件: [NVIDIA Driver Downloads](https://www.nvidia.com/Download/index.aspx) 输入具体的硬件名称(此处假设为 `5090D`),即可找到匹配的操作系统下的驱动包链接。 #### 3. **使用说明概述** 由于缺乏明确的产品手册描述,这里总结了一般性的指导原则适用于大数高性能计单元 (HPC Units): - 确认 BIOS 设置允许 PCIe Gen4×16 带宽模式; - 调整电源供应器功率至额定范围以上以保障稳定供电; - 测试温度控制策略防止过热现象发生; 这些通用准则有助于提升整体系统的可靠性与效率。 --- ### 示例代码片段展示如何查询已加载模块状态 下面给出一段 Python 脚本来列举当前环境里可用的 PyTorch/CUDA 设备详情: ```python import torch def check_cuda_devices(): if not torch.cuda.is_available(): print("No CUDA devices detected.") return device_count = torch.cuda.device_count() for i in range(device_count): name = torch.cuda.get_device_name(i) capability = torch.cuda.get_device_capability(i) memory_info = torch.cuda.mem_get_info(i) print(f"Device {i}: Name={name}, Capability={capability}") print(f"\tTotal Memory: {memory_info[1]/(1024**3):.2f} GB") print(f"\tFree Memory: {memory_info[0]/(1024**3):.2f} GB") check_cuda_devices() ``` 上述脚本可以帮助开发者快速了解部署场景下实际具备哪些资源可供调度利用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值