随机信号处理笔记:匹配滤波器
——南京理工大学顾红老师的《随机信号处理》浅析
文章目录
引言
无线电设备在传输信号时必定伴有噪声。通常,用信号和噪声的功率之比 S / N S/N S/N表征噪声对信号传输的影响。匹配滤波器理论至今仍是信号检测理论的重要组成部分。
匹配滤波器(matched filter):白噪声背景中,按照最大信噪比准则,获得最大输出信噪比的线性滤波器。
1.线性滤波器输出端信噪比
噪声 n ( t ) n(t) n(t)是零均值的高斯平稳白噪声。其功率谱密度为常量,即:
G n ( ω ) = N 0 2 , − ∞ < ω < ∞ G_n(\omega)=\frac{N_0}{2},\qquad -\infty<\omega<\infty Gn(ω)=2N0,−∞<ω<∞
噪声的自相关函数:
R ( τ ) = E [ n ( t ) n ( t + τ ) ] = N 0 2 δ ( τ ) R(\tau)=E[n(t)n(t+\tau)]=\frac{N_0}{2}\delta(\tau) R(τ)=E[n(t)n(t+τ)]=2N0δ(τ)
信号 s ( t ) s(t) s(t)的频谱 S ( ω ) S(\omega) S(ω)为:
S ( ω ) = ∫ − ∞ ∞ s ( t ) e − j ω t d t S(\omega)=\int_{-\infty}^{\infty}s(t)e^{-j\omega t}dt S(ω)=∫−∞∞s(t)e−jωtdt
经过该线性滤波器后,输出信号 s o ( t ) s_o(t) so(t):
s o ( t ) = 1 2 π ∫ − ∞ ∞ H ( ω ) S ( ω ) e j ω t d ω s_o(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}H(\omega)S(\omega)e^{j\omega t}d\omega so(t)=2π1∫−∞∞H(ω)S(ω)ejωtdω
输出噪声的功率谱密度:
G n o ( ω ) = G n ( ω ) ∣ H ( ω ) ∣ 2 = N 0 2 ∣ H ( ω ) ∣ 2 G_{n_o}(\omega)=G_n(\omega)|H(\omega)|^2=\frac{N_0}{2}|H(\omega)|^2 Gno(ω)=Gn(ω)∣H(ω)∣2=2N0∣H(ω)∣2
进而,输出噪声的平均功率为:
E [ n o 2 ( t ) ] = σ 2 = N 0 4 π ∫ − ∞ ∞ ∣ H ( ω ) ∣ 2 d ω E[n_o^2(t)]=\sigma^2=\frac{N_0}{4\pi}\int_{-\infty}^{\infty}|H(\omega)|^2d\omega E[no2(t)]=σ2=4πN0∫−∞∞∣H(ω)∣2dω
⧫ \blacklozenge ⧫ 最后可得到线性滤波器输出端的瞬时信噪比公式:
S N R = 输 出 信 号 的 瞬 时 功 率 输 出 噪 声 的 平 均 功 率 = s o 2 ( t ) E [ n o 2 ( t ) ] = [ 1 2 π ∫ − ∞ ∞ H ( ω ) S ( ω ) e j ω t d ω ] 2 N 0 4 π ∫ − ∞ ∞ ∣ H ( ω ) ∣ 2 d ω SNR= \frac{输出信号的瞬时功率}{输出噪声的平均功率}=\frac{s_o^2(t)}{E[n_o^2(t)]}=\frac{[\frac{1}{2\pi}\int_{-\infty}^{\infty}H(\omega)S(\omega)e^{j\omega t}d\omega]^2}{\frac{N_0}{4\pi}\int_{-\infty}^{\infty}|H(\omega)|^2d\omega } SNR=输出噪声的平均功率输出信号的瞬时功率=E[no2(t)]so2(t)=4πN0∫−∞∞∣H(ω)∣2dω[2π1∫−∞∞H(ω)S(ω)ejωtdω]2
★ \bigstar ★ 假设,在 t = t 0 t=t_0 t=t0时刻,线性滤波器输出端输出最大信噪比。此时有:
S N R m a x = 输 出 信 号 的 瞬 时 功 率 输 出 噪 声 的 平 均 功 率 = s o 2 ( t 0 ) E [ n o 2 ( t ) ] = [ 1 2 π ∫ − ∞ ∞ H ( ω ) S ( ω ) e j ω t 0 d ω ] 2 N 0 4 π ∫ − ∞ ∞ ∣ H ( ω ) ∣ 2 d ω SNR_{max}= \frac{输出信号的瞬时功率}{输出噪声的平均功率}=\frac{s_o^2(t_0)}{E[n_o^2(t)]}=\frac{[\frac{1}{2\pi}\int_{-\infty}^{\infty}H(\omega)S(\omega)e^{j\omega t_0}d\omega]^2}{\frac{N_0}{4\pi}\int_{-\infty}^{\infty}|H(\omega)|^2d\omega } SNRmax=输出噪声的平均功率输出信号的瞬时功率=E[no2