ORB-SLAM3实际数据与OptiTrack真值比较的实现与测试一
前言
在对ORB-SLAM3进行改进时,我们通常会用公开数据集来测试算法精度,但是如果我们接入自己的相机与IMU在实际场景跑,尤其是在室内环境,如何获得grondtruth,成为我们最关心的问题。最近,实验室新引进一套OptiTrack动作捕捉系统,该系统具备亚毫米级精度,能精确采集运动体位置姿态,六自由度数据,是现阶段较为精确的真值系统。
(2021.12.15更新,经过论证,以下方法存在问题,需进一步改进,待修改后出version2)
一、新起节点作为中间桥梁
要想在实际场景对ORB-SLAM3跑出来的数据与OptiTrack的真值数据进行比较,我们采用evo工具进行评估,因此我们需要将两个数据按照规定的格式保存下来。
这里我们想到重新起一个节点evo_slam_optitrack,原因如下:
- 该节点同时订阅ORB-SLAM3与OptiTrack发布的里程计数据。这样不用改动ORB-SLAM3的框架,将节点evo_slam_optitrack作为一个中间桥梁即可。
- 我们所得的两个轨迹需要在时间戳上做同步,在同一个节点下实现较为方便。
//定义时间戳
double trac_stamp;
//
void odometry_save_callback(const nav_msgs::Odometry::ConstPtr& odom_msg)
{
nav_msgs::Odometry odom = *odom_msg;
//odom_stamp = odom.header.stamp.toSec();
ofstream slam_path_file("/home/user/Documents/ORBSLAM3.txt", ios::app);
slam_path_file.setf(ios::fixed, ios::floatfield);
slam_path_file.precision(0);
slam_path_file << trac_stamp * 1e9 << " ";
slam_path_file.precision(10);
slam_path_file << odom.pose.pose.position.x << " "
<< odom.pose.pose.position.y << " "
<< odom.pose.pose.position.z << " "
<< odom.pose.pose.orientation.x << " "
<< odom.pose.pose.orientation.y << " "
<< odom.pose.pose.orientation.z << " "
<< odom.pose.pose.orientation.w << endl;
slam_path_file.close();
}
void optiTrack_save_callback(const opti_track::TrackData::ConstPtr& trac_msg)
{
opti_track::TrackData trac = *trac_msg;
trac_stamp = trac.header.stamp.toSec();
ofstream optitrack_path_file("/home/user/Documents/OptiTrack.txt", ios::app);
optitrack_path_file.setf(ios::fixed, ios::floatfield);
optitrack_path_file.precision(0);
optitrack_path_file << trac_stamp * 1e9 << " ";
optitrack_path_file.precision(10);
optitrack_path_file << trac_msg->rigid_bodies[0].pose.position.x << " "
<< trac_msg->rigid_bodies[0].pose.position.y << " "
<< trac_msg->rigid_bodies[0].pose.position.z << " "
<< trac_msg->rigid_bodies[0].pose.orientation.x << " "
<< trac_msg->rigid_bodies[0].pose.orientation.y << " "
<< trac_msg->rigid_bodies[0].pose.orientation.z << " "
<< trac_msg->rigid_bodies[0].pose.orientation.w << endl;
optitrack_path_file.close();
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "evo_slam_optitrack");
ros::NodeHandle nh("~");
ros::Subscriber sub_odom = nh.subscribe<nav_msgs::Odometry>("/Mono_Inertial/odometry", 100, odometry_save_callback);
ros::Subscriber sub_optiTrack = nh.subscribe<opti_track::TrackData>("/opti_track_node/opti_track_data", 100, optiTrack_save_callback);
ros::spin();
return 0;
}
二、ORB-SLAM3节点修改
1.数据格式处理
对ORB-SLAM3源码进行分析,该框架有基于ROS的版本,但并未发布里程计数据,因此需要我们自己去写publisher。首先假设我们跑的是单目+IMU版,在/src下找到Mono_Inertial.cc,这里订阅了相机和IMU话题。找到void ImageGrabber::SyncWithImu() 函数,该函数中调用了TackMonocular(),这里函数返回的为Tcw矩阵,这就是估计的相机在世界系下的表达。矩阵前3x3为旋转,最后一列前三个元素表示x,y,z。这里将Tcw拆解为旋转和平移,调用opencv中的函数,对矩阵进行拆解。ROS中odomtry是以四元数的形式来表示旋转,因此,需要找到工程中实现四元数转换的代码段。此代码在converter.cc中采用Converter::toQuaternion()函数实现的,而该函数中又调用了Converter::toMatrix3d(),于是,为了不引入这个头文件以及改cmakelist,我们直接将这个函数在Mono_Inertial.cc中实现。
待补充
2.数据发布
将上步中的数据处理成odom标准格式,然后publish。
待补充
三、cmakelist
cmakelist.txt中需要增加相应的节点
#Node for evo_slam_optitrack
add_executable(evo_slam_optitrack src/evo_slam_optitrack.cpp)
target_link_libraries(evo_slam_optitrack
${catkin_LIBRARIES} libNatNet.so
)
四、launch文件
<launch>
<node pkg="opti_track" name="evo_slam_optitrack_node" type="evo_slam_optitrack" output="screen">
</node>
</launch>
总结
2021.12.15更新
经过整个过程的修改和论证,总结问题如下:
1.以上对ORBSLAM3修改所发布的odom只是前端vio的数据,并非回环后的数据,而optitrack得到的数据为真值,这样做数据对比评估毫无意义。
2.两数据做同步需要在同一时刻下同时保存当前帧的数据(时间戳一致,帧率一致),而上述尝试中只是暴力将时间戳赋为一致,实际数据并未同步。
针对以上问题,再次进行修改,后期会整理出。